分析 (Ⅰ)由三角函数恒等变换化简函数解析式可得f(x)=$sin(2x+\frac{π}{6})$,由$-\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{π}{2}+2kπ(k∈$Z)即可解得f(x)的单调递增区间.
(Ⅱ)由(Ⅰ)可求$f(A)=sin(2A+\frac{π}{6})=\frac{1}{2}$,结合范围0<A<π,$\frac{π}{6}<2A+\frac{π}{6}<2π+\frac{π}{6}$,即可求得A的值,由正弦定理即可求得a的值.
解答 (本小题共13分)
解:(Ⅰ)∵$f(x)=sin(2x-\frac{π}{6})+2{cos^2}x-1=\frac{{\sqrt{3}}}{2}sin2x-\frac{1}{2}cos2x+cos2x$…(2分)
=$\frac{{\sqrt{3}}}{2}sin2x+\frac{1}{2}cos2x$=$sin(2x+\frac{π}{6})$…(3分)
由$-\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{π}{2}+2kπ(k∈$Z)得,$-\frac{π}{3}+kπ≤x≤\frac{π}{6}+kπ(k∈$Z) (5分)
∴f(x)的单调递增区间是$[-\frac{π}{3}+kπ,\frac{π}{6}+kπ](k∈$Z) …(7分)
(Ⅱ)∵$f(A)=sin(2A+\frac{π}{6})=\frac{1}{2}$,0<A<π,$\frac{π}{6}<2A+\frac{π}{6}<2π+\frac{π}{6}$,
于是$2A+\frac{π}{6}=\frac{5π}{6}$,
∴$A=\frac{π}{3}$…(10分)
∵△ABC外接圆的半径为$\sqrt{3}$,
由正弦定理$\frac{a}{sinA}=2R$,得$a=2RsinA=2\sqrt{3}×\frac{{\sqrt{3}}}{2}=3$,…(13分)
点评 本题主要考查了三角函数恒等变换,正弦定理,正弦函数的单调性的应用,解题时注意分析角的范围,属于基本知识的考查.
科目:高中数学 来源: 题型:选择题
| A. | [-2,2] | B. | [-$\frac{1}{2}$,0)∪(0,$\frac{1}{2}$] | C. | [-2,-$\frac{1}{2}$]∪[$\frac{1}{2}$,2] | D. | (-∞,-2]∪[2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{2}$,6) | B. | ($\frac{1}{2}$,3) | C. | [$\frac{1}{2}$,6) | D. | [$\frac{1}{2}$,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com