精英家教网 > 高中数学 > 题目详情
18.复数$\frac{\sqrt{2}+i}{1-\sqrt{2}i}$=(  )
A.iB.-iC.2($\sqrt{2}$+i)D.1+i

分析 利用复数的运算法则即可得出.

解答 解:复数$\frac{\sqrt{2}+i}{1-\sqrt{2}i}$=$\frac{(1-\sqrt{2}i)i}{1-\sqrt{2}i}$=i,
故选:A.

点评 本题考查了复数的运算法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.向边长分别为$\sqrt{13}$、5、6的三角形区域内随机投一点D,则该点D与三角形三个顶点距离都大于$\sqrt{3}$的概率为(  )
A.0B.$1-\frac{π}{3}$C.$1-\frac{π}{6}$D.$1-\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合A={1},B={-1,2m-1},若A?B,则实数m的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=sin(2x-\frac{π}{6})+2{cos^2}x-1(x∈{R})$.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)在△ABC中,三个内角A,B,C的对边分别为a,b,c,已知f(A)=$\frac{1}{2}$,且△ABC外接圆的半径为$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.实数a,b,c,d满足|b-a+2|+(c+d2-3lnd)2=0,则(b-d)2+(a-c)2的最小值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知8个非零实数a1,a2,a3,a4,a5,a6,a7,a8,向量$\overrightarrow{O{A_1}}=({a_1},\;{a_2})$,$\overrightarrow{O{A_2}}=({a_3},\;{a_4})$,$\overrightarrow{O{A_3}}=({a_5},\;{a_6})$,$\overrightarrow{O{A_4}}=({a_7},\;{a_8})$,给出下列命题:
①若a1,a2,…,a8为等差数列,则存在i,j(1≤i,j≤8,i≠j,i,j∈N*),使$\overrightarrow{O{A_1}}$+$\overrightarrow{O{A_2}}$+$\overrightarrow{O{A_3}}$+$\overrightarrow{O{A_4}}$与向量$\overrightarrow{n}$=(ai,aj)共线;
②若a1,a2,…,a8为公差不为0的等差数列,向量$\overrightarrow{n}$=(ai,aj)(1≤i,j≤8,i≠j,i,j∈N*),$\overrightarrow{q}$=(1,1),M={y|y=$\overrightarrow{n}$•$\overrightarrow{q}$},则集合M的元素有12个;
③若a1,a2,…,a8为等比数列,则对任意i,j(1≤i,j≤4,i,j∈N*),都有$\overrightarrow{O{A_i}}$∥$\overrightarrow{O{A_j}}$;
④若a1,a2,…,a8为等比数列,则存在i,j(1≤i,j≤4,i,j∈N*),使$\overrightarrow{O{A_i}}$•$\overrightarrow{O{A_j}}$<0;
⑤若$\overrightarrow{m}$=$\overrightarrow{O{A_i}}$•$\overrightarrow{O{A_j}}$(1≤i,j≤4,i≠j,i,j∈N*),则$\overrightarrow{m}$的值中至少有一个不小于0.
其中所有真命题的序号是①③⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知四点A(3,-1),B(-1,1),C(3,5),D(5,9),判断直线AB与CD的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知抛物线y2=2px(p>0)的焦点为F,A点在抛物线上,且A的横坐标为4,|AF|=5.
(1)求抛物线的方程;
(2)设l为过(4,0)点的任意一条直线,若l交抛物线于A,B两点,求证:以AB为直径的圆必过坐标原点.

查看答案和解析>>

同步练习册答案