精英家教网 > 高中数学 > 题目详情
7.已知x,y∈R+,且4x+y=1,则$\frac{1}{x}+\frac{9}{y}$的最小值是25.

分析 利用“乘1法”与基本不等式的性质即可得出.

解答 解:∵x,y∈R+,且4x+y=1,
则$\frac{1}{x}+\frac{9}{y}$=(4x+y)$(\frac{1}{x}+\frac{9}{y})$=13+$\frac{y}{x}$+$\frac{36x}{y}$≥13+2$\sqrt{\frac{y}{x}•\frac{36x}{y}}$=25.
故答案为:25.

点评 本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若方程$\frac{x^2}{4-t}+\frac{y^2}{t-1}=1$所表示的曲线为C,给出下列四个命题:
①若C为椭圆,则1<t<4;
②若C为双曲线,则t>4或t<1;
③曲线C不可能是圆;
④若$1<t<\frac{5}{2}$,曲线C为椭圆,且焦点坐标为$(±\sqrt{5-2t},0)$;若t<1,曲线C为双曲线,且虚半轴长为$\sqrt{1-t}$.
则为真命题的是(  )
A.①②B.②③C.③④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知△ABC中,a=4$\sqrt{2}$,b=4,A=45°,则B等于(  )
A.30°B.30°或150°C.60°D.60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知直线m,n均在平面α内,则“直线l⊥m且直线l⊥n”是“直线l⊥平面α”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|x2-x+a=0}的子集有4个,则实数a的取值范围为(  )
A.$({\frac{1}{4},+∞})$B.$[{\frac{1}{4},+∞})$C.$({-∞,\frac{1}{4}})$D.$({-∞,\frac{1}{4}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若方程x•log2x=1008的解为x1,方程x•2x=1008的解为x2,则x1x2的值为(  )
A.2016B.4032C.1008D.2048

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若$sin(\frac{π}{3}+a)=\frac{5}{12}$,则$cos(\frac{π}{6}-a)$=$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=|x-2|+1,g(x)=kx,若方程f(x)=g(x)有且只有一个实根,则实数k的取值集合为{k|k<-1,或k≥1,或k=$\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.用数学归纳法证明“当n为正奇数时,xn+yn能被x+y整除”,第二步归纳假设应该写成(  )
A.假设当n=k(k∈N*)时,xk+yk能被x+y整除
B.假设当n=2k(k∈N*)时,xk+yk能被x+y整除
C.假设当n=2k+1(k∈N*)时,xk+yk能被x+y整除
D.假设当n=2k-1(k∈N*)时,x2k-1+y2k-1能被x+y整除

查看答案和解析>>

同步练习册答案