精英家教网 > 高中数学 > 题目详情
(1)已知sinα-cosα=
1
3
,求sin2α的值;
(2)求
tan20°+tan40°-tan60°
tan20°tan40°
的值.
考点:二倍角的正弦,三角函数的化简求值
专题:综合题,三角函数的求值
分析:(1)将已知等式两边平方,利用完全平方公式及同角三角函数间的基本关系化简,再利用二倍角的正弦函数公式化简即可求出sin2α的值;
(2)利用和角的正切公式,即可得出结论.
解答: 解:(1)将sinα-cosα=
1
3
两边平方得:
(sinα-cosα)2=sin2α-2sinαcosα+cos2α=1-sin2α=
1
9

∴sin2α=
8
9

(2)
tan20°+tan40°-tan60°
tan20°tan40°
=
tan60°(1-tan20°tan40°)-tan60°
tan20°tan40°
=-
3
点评:此题考查了二倍角的正弦函数公式,以及同角三角函数间的基本关系,考查和角的正切公式,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求证:函数f(x)=
x
x+2
在区间(-∞,-2)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
ax+b
x2+1
是定义在(-∞,+∞)上的奇函数,且f(
1
2
)=
2
5

(1)求实数a,b,并确定函数f(x)的解析式;
(2)判断f(x)在(-1,1)上的单调性,并用定义证明你的结论;
(3)写出f(x)的单调减区间,并判断f(x)有无最大值或最小值?如有,写出最大值或最小值.(不需要说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
(6-a)x-4a (x<1)
logax(x ≥ 1)
是(-∞,+∞)上的增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式ax2+ax+1>0对任意x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

莆田往福州的某次动车途中经停福清站,为了方便莆田市VIP客户搭乘,车站信息管理员对该次动车VIP车厢(共4个座位)莆田至福州的全程空座位数n进行统计,得到10个车次样本数据的茎叶图,如图所示.(全程空座位数即莆田至福清、福清至福州两个站段的空座位数之和)
(1)求样本平均数
.
n

(2)某天,VIP客户李明因有急事凭身份证从莆田搭乘该次动车,补买VIP车厢无座票(没有座位,若有空座位则可就坐)前往福州,且途中不再更换车厢,若以样本平均数
.
n
估计该次动车VIP车厢的全程空座位数,且在两个站段共8个座位中,每个座位成为空座位数是等可能的.
①将VIP车厢第i号座位在莆田至福清站段标记为ai,在福清至福州站段标记为bi(i=1,2,3,4),请列举出途中出现
.
n
个空座位所有的可能结果;
②求李明在途中恰有一个站段有座位坐的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x满足不等式2(log 
1
2
x)2+7log 
1
2
x+3≤0
(1)求x的取值范围;
(2)在(1)的条件下,求函数f(x)=(log2
x
4
)•(log2
x
2
)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA是圆O的切线,A为切点,PO与圆O交于点B、C,AQ⊥OP,垂足为Q.若PA=4,PC=2,求AQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)集合A∪{1,2,3}={1,2,3}写出所有可能的集合A
(2)集合M={-1,2},N={x|x2-ax+4=0},若N⊆M,求a.

查看答案和解析>>

同步练习册答案