精英家教网 > 高中数学 > 题目详情
15.三个实数成等差数列,首项是9,若将第二项加2、第三项加20可使得这三个数依次构成等比数列{an},则a3的所有取值中的最小值是(  )
A.1B.4C.36D.49

分析 设首项为9的等差数列分别为9,9+d,9+2d,则(11+d)2=9(29+2d),由此能求出a3的所有可能取值中最小值.

解答 解:设首项为9的等差数列分别为9,9+d,9+2d,
其中d为公差,又9,11+d,29+2d成等比数列,
则(11+d)2=9(29+2d),解得d=-14或d=10,
当d=-14时,数列{an}的三项依次为9,-3,1;
当d=10时,数列{an}的三项依次为9,21,49.
故a3的所有可能取值中最小的是1,
故选:A.

点评 本题考查数列中第三项的最小值的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.有6名同学参加甲、乙、丙3项课外活动,每位同学必须参加一项活动不能同时参加两项,且每项活动都要有人参加,其中甲活动最多安排2人,则不同的安排方法有(  )种.
A.320B.360C.384D.390

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设α∈($\frac{π}{2}$,π),且tanα=-2,则sinα=$\frac{2\sqrt{5}}{5}$,cosα=$-\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线x-3y+2=0不经过(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,AB=5,AC=7,BC=8,则$\overrightarrow{AB}$•$\overrightarrow{BC}$=-20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,若(a+b+c)(b+c-a)=bc,且sinA=2sinBcosC,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某城市居民月生活用水收费标准为$W(t)=\left\{{\begin{array}{l}{1.6t,({0≤t<2})}\\{2.7t,({2≤t<3.5})}\\{4.0t,({3.5≤t≤4.5})}\end{array}}\right.$(t为用水量,单位:吨;W为水费,单位:元),从该市抽取100户居民的月均用水量的频率分布直方图如图所示. 

(Ⅰ)求这100户居民月均用水量的中位数及平均水费;
(Ⅱ)连续10个月,每月从这100户中随机抽取一户,若抽到的用户当月所交水费少于9.45元,则对其予以奖励.设X为获奖户数,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,AB=4,AC=6,∠BAC=60°.点A在边BC上的投影为点D.
(1)试求线段AD的长度;
(2)设点D在边AB上的投影为点E,在边AC上的投影为F,试求线段EF的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)=Asin(2x+φ),其中A>0.
(1)若?x∈R,使f(x+a)-f(x)=2A成立,则实数a的最小值是$\frac{π}{2}$;
(2)若A=1,则f(x+$\frac{π}{6}$)-f(x)的最大值为1.

查看答案和解析>>

同步练习册答案