分析 通过(a+b+c)(b+c-a)=bc化简整理得b2+bc+c2=a2,结合余弦定理求得cosA,进而求得A,把A代入sinA=2sinBcosC中化简整理求得B、C,即可判断三角形的形状.
解答 解:在△ABC中,∵(a+b+c)(b+c-a)=bc,
∴[(b+c)+a][(b+c)-a]=bc,
∴(b+c)2-a2=bc,
b2+2bc+c2-a2=bc,
b2+c2-a2=-bc,
根据余弦定理有cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{-bc}{2bc}$=-$\frac{1}{2}$,
∴A=120°,
∵sinA=2sinBcosC,可得:sin(B+C)=2sinBcosC,
∴sin(B-C)=0,可得B=C,
∵A=120°,
∴B=C=30°.
∴△ABC是等腰三角形.
点评 本题主要考查了余弦定理在解三角形中的应用.要熟练记忆余弦定理的公式及其变形公式.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 4 | C. | 36 | D. | 49 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a+aq+…+aqn-1 | B. | $\frac{{a(1-{q^n})}}{1-q}$ | C. | a+aq+…+aqn | D. | $\frac{{a(1-{q^{n+1}})}}{1-q}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com