分析 (Ⅰ)由题意知,动点P(x,y)(x≥0)到定点F(1,0)的距离等于点P(x,y)到直线x=-1的距离,由抛物线的定义知点P的轨迹方程.
(Ⅱ)由D(x0,2)在曲线C上,得4=4x0⇒x0=1,从而D(1,2),设而不求的思想,利用韦达定理,通过直线l1,l2过点D,且它们的倾斜角互补建立关系,证明直线MN的斜率为定值.
解答 解:(Ⅰ)由题意知,动点P(x,y)(x≥0)到定点F(1,0)的距离等于点P(x,y)到直线x=-1的距离,
由抛物线的定义知点P的轨迹方程是以F(1,0)为焦点,以x=-1为准线的抛物线,
故曲线C的方程为y2=4x.
(Ⅱ)由D(x0,2)在曲线C上,得4=4x0⇒x0=1,从而D(1,2)
设M(x1,y1),N(x2,y2),
直线l1:y=k(x-1)+2,
则l2:y=-k(x-1)+2,
由$\left\{{\begin{array}{l}{y=k(x-1)+2}\\{{y^2}=4x}\end{array}}\right.⇒{k^2}{x^2}-(2{k^2}-4k+4)x+{(k-2)^2}=0$,
∴${x_1}×1=\frac{{{{(k-2)}^2}}}{k^2}=\frac{{{k^2}-4k+4}}{k^2}$
同理${x_2}=\frac{{{k^2}+4k+4}}{k^2}$,
∴${x_1}+{x_2}=\frac{{2{k^2}+8}}{k^2},{x_1}-{x_2}=\frac{-8}{k}$,
∴${y_1}-{y_2}=k({x_1}+{x_2})-2k=\frac{8}{k}$
∴${k_{MN}}=\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}=\frac{{\frac{8}{k}}}{{-\frac{8}{k}}}=-1$
直线MN的斜率为定值-1.
点评 本题考查了抛物线的定义和直线与抛物线的位置关系的运用能力和计算能力.属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | 32 | D. | 64 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | “sinα=$\frac{3}{5}$”是“cos2α=$\frac{7}{25}$”的必要不充分条件 | |
| B. | 已知命题p:?x∈R,使2x>3x;命题q:?x∈(0,+∞),都有$\frac{1}{{x}^{2}}$<$\frac{1}{{x}^{3}}$,则p∧(¬q)是真命题 | |
| C. | 命题“若xy=0,则x=0或y=0”的否命题是“若xy≠0,则x≠0或y≠0” | |
| D. | 从匀速传递的生产流水线上,质检员每隔5分钟从中抽取一件产品进行某项指标检测,这是分成抽样 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com