分析 利用三角形面积公式列出关系式,将sinA及已知面积代入求出bc的值,利用余弦定理即可求出b+c的值,即可确定出三角形ABC周长.
解答 解:∵S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}$bc×$\frac{\sqrt{3}}{2}$=$\frac{{15\sqrt{3}}}{4}$,
∴解得bc=15,
又∵a=8,A=60°,
∴由余弦定理得a2=b2+c2-2bccosA=b2+c2-bc=(b+c)2-3bc=(b+c)2-45=64,即解得:b+c=$\sqrt{109}$,
∴△ABC的周长为:a+b+c=8+$\sqrt{109}$.
故答案为:8+$\sqrt{109}$.
点评 此题考查了正弦、余弦定理,三角形面积公式,熟练掌握定理及公式是解本题的关键,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | f(x)=x2-1 | B. | f(x)=x2-x | C. | f(x)=x2+x | D. | f(x)=x2+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[0,\frac{π}{3}]$ | B. | $[\frac{π}{3},\frac{π}{2}]$ | C. | $[0,\frac{π}{3}]∪(\frac{π}{2},π)$ | D. | $[\frac{π}{3},π)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=2sin3x | B. | $f(x)=2sin(x+\frac{π}{3})$ | C. | $f(x)=2sin(3x+\frac{π}{6})$ | D. | $f(x)=2sin(2x+\frac{π}{6})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2] | B. | ($\frac{13}{4}$,2] | C. | (1,3] | D. | ($\frac{13}{4}$,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (-∞,1] | C. | (-∞,0)∪(0,1] | D. | (0,1] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com