精英家教网 > 高中数学 > 题目详情
如图,已知底面为菱形的四棱锥P-ABCD中,△ABC是边长为2的正三角形,AP=BP=
2
2
PC=
2

(1)求证:平面PAB⊥平面ABCD;
(2)求二面角A-PC-D的余弦值.
考点:与二面角有关的立体几何综合题,平面与平面垂直的判定
专题:空间位置关系与距离,空间角
分析:(1)取AB的中点E,连结PE、CE,得PE⊥AB,PE⊥CE,从而PE⊥平面ABCD,由此能证明平面PAB⊥平面ABCD.
(2)在Rt△PEC中,过点E作EF⊥PC于点F,连结AF,过A作平面PCD的垂线,垂足为H,连结FH,由已知条件推导出∠AFH是二面角A-PC-D的平面角,由此能求出二面角A-PC-D的余弦值.
解答: (1)证明:如图,取AB的中点E,连结PE、CE,
则PE是等腰△PAB的底边上的中线,
∴PE⊥AB,∴PE=1,CE=
3
,PC=2,
∴PE2+CE2=PC2,∴PE⊥CE,
又AB?平面ABCD,CE?平面ABCD,且AB∩CE=E,
∴PE⊥平面ABCD,
∵PE?平面PAB,∴平面PAB⊥平面ABCD.
(2)解:如图,在Rt△PEC中,
过点E作EF⊥PC于点F,连结AF,
过A作平面PCD的垂线,垂足为H,连结FH,
∵AE⊥EC,AE⊥PE,∴AE⊥平面PEC,∴AE⊥PC,
又EF⊥PC,∴PC⊥平面AEF,∴PC⊥AF,
又PC⊥AH,∴AC⊥平面AFH,∴PC⊥FH,
∴∠AFH是二面角A-PC-D的平面角.
由AB⊥平面PEC,知EF⊥AB,
又AB∥CD,∴EF⊥CD,
又EF⊥PC,∴EF⊥平面PCD,
∵AH⊥平面PCD,∴AH∥EF,
∴A、E两点到平面PCD的距离相等,∴AH=EF,
∴四边形AEFH是矩形,∠AFH=∠EAP,
在Rt△AEF中,AE=1,EF=
3
2
,AF=
7
2

∴cos∠EAF=
AE
AF
=
2
7
7

∴二面角A-PC-D的余弦值是
2
7
7
点评:本题考查平面与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(sin(
x
2
+
π
12
),cos
x
2
),
b
=(cos(
x
2
+
π
12
),-cos
x
2
),x∈[
π
2
,π],设函f(x)=
a
b

(1)若cosx=-
3
5
,求函数f(x)的值;
(2)将函数f(x)的图象先向右平移m个单位,再向上平移n个单位,使平移后的图象关于原点对称,若0<m<π,n>0,试求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+(a-1)x2+bx,f(x)在x=1处的切线斜率为-9,且f(x)的导函数f′(x)为偶函数.
(Ⅰ)求a,b的值;
(Ⅱ) 求f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
3
cos4x+sin4x,求函数的最小正周期,递增区间及最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-ln(x+m)
(1)求f(x)的单调区间和极值;
(2)当m为何值时,不等式f(x)≥0恒成立?
(3)证明:当m∈N且m>1时,方程f(x)=0在[1-m,em-m]内有唯一实根.(e为自然对数的底数;参考公式:2m=C
 
0
m
+C
 
1
m
+C
 
2
m
+…+C
 
m
m

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产了A,B,C,D,E五类不同的产品,现从某批产品中随机抽取20个,对其进行统计分析,得到频率分布表如下:
种类ABCDE
频率0.05X0.150.35Y
(Ⅰ)在抽取的20个产品中,产品种类为E的恰有2个,求X,Y的值;
(Ⅱ)在(I)的条件下,从产品种类为C和E的产品中,任意抽取2个,求抽取的2个产品种类相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
2x-1
x+1

(1)求函数f(x)图象的对称中心;
(2)判断函数f(
x
)的单调性,并证明你的结论;
(3)e为自然对数的底数,求函数f(ex)-f(e-x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

对2×2数表定义平方运算如下:
ab
cd
2=
ab
cd
ab
cd
=
a2+bc   ab+bd
ac+cdbc+d2
,则
-1 2
01
2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

研究问题:“已知关于x的不等式ax2-bx+c>0的解集为(1,2),解关于x的不等式cx2-bx+a>0”,有如下解法:
解:由ax2-bx+c>0⇒a-b(
1
x
)+c(
1
x
2>0,令t=
1
x
,则t∈(
1
2
,1)所以不等式cx2-bx+a>0的解集为(
1
2
,1).
参考上述的解法,已知关于x的不等式
m
log2x+a
+
log2x+b
log2x+c
<0的解集为(
1
2
2
2
),则关于x的不等式
mlog2x
alog2x-1
+
blog2x-1
clog2x-1
<0的解集为
 

查看答案和解析>>

同步练习册答案