精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+(a-1)x2+bx,f(x)在x=1处的切线斜率为-9,且f(x)的导函数f′(x)为偶函数.
(Ⅰ)求a,b的值;
(Ⅱ) 求f(x)的极值.
考点:利用导数研究曲线上某点切线方程,利用导数研究函数的极值
专题:综合题,导数的概念及应用
分析:(Ⅰ)先利用导数求出在x=1处的导函数值,再利用f(x)的导函数f′(x)为偶函数,建立方程,即可求a,b的值;
(Ⅱ)确定函数的单调性,即可求f(x)的极值.
解答: 解:(Ⅰ)依题意得f′(x)=3x2+2(a-1)x+b,
∵函数f(x)=x3+(a-1)x2+bx,f(x)在x=1处的切线斜率为-9,且f(x)的导函数f′(x)为偶函数,
3+2(a-1)+b=9
a=1

∴a=1,b=-12;
(Ⅱ)由(Ⅰ)知f′(x)=3x2-12=0,可得x=±2,
x∈(-∞,-2),函数单调递增,x∈(-2,2),函数单调递减,x∈(2,+∞),函数单调递增,
∴x=-2时,函数取得极大值16,x=2时,函数取得极小值-16.
点评:本小题主要考查导数的几何意义、利用导数研究曲线上某点切线方程、考查函数的极值等基础知识,考查运算求解能力.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数y=log22x+2log2x+5的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学为了增强学生对消防安全知识的了解,举行了一次消防知识竞赛,其中一道题是连线题,要求将4种不同的消防工具与它们的4种不同的用途一对一连线,规定:每连对一条得10分,连错一条得-5分,某参赛者随机用4条线把消防工具与用途一对一全部连接起来.
(1)求该参赛者恰好连对一条的概率;
(2)设X为该参赛者此题的得分,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
mx2-4mx+1
的定义域为R,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足Sn2=an(Sn-
1
2
).
(1)证明:{
1
Sn
}为等差数列,并求an
(2)设bn=
Sn
2n+1
,求数列{bn}的前n项和Tn
(3)是否存在自然数m,使得对任意n∈N*,都有Tn
1
4
(m-8)成立?若存在求出m的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G,H分别是CE和CF的中点.
(1)求证:AF∥平面BDGH:
(2)求VE-BFH

查看答案和解析>>

科目:高中数学 来源: 题型:

空间四边形ABCD中,AD=BC=a,与直线AD,BC都平行的平面分别交AB,AC,CD,BD于E,F,H.
(1)求证:四边形EFGH是平行四边形;
(2)求四边形EFGH的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知底面为菱形的四棱锥P-ABCD中,△ABC是边长为2的正三角形,AP=BP=
2
2
PC=
2

(1)求证:平面PAB⊥平面ABCD;
(2)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

记数列{an}的前n项和为Sn,且Sn=2(an-1),则a3=
 

查看答案和解析>>

同步练习册答案