精英家教网 > 高中数学 > 题目详情
5.为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做100次和150次试验,并且利用线性回归方法,求得回归直线分别为t1和t2,已知两人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法正确的是(  )
A.t1和t2有交点(s,t)B.t1与t2相交,但交点不一定是(s,t)
C.t1与t2必定平行D.t1与t2必定重合

分析 由题意知,两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,所以两组数据的样本中心点是(s,t),回归直线经过样本的中心点,得到直线t1和t2都过(s,t).

解答 解:∵两组数据变量x的观测值的平均值都是s,
对变量y的观测值的平均值都是t,
∴两组数据的样本中心点都是(s,t),
∵数据的样本中心点一定在线性回归直线上,
∴回归直线t1和t2都过点(s,t),
∴两条直线有公共点(s,t).
故选:A.

点评 本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x与Y之间的关系,这条直线过样本中心点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.Rt△ABC顶点A(0,0),B(0,4),C(-2,0),则△ABC内角∠A的平分线方程是(  )
A.y=-xB.y=-$\frac{1}{2}$x(-$\frac{6}{5}$≤x≤0)C.y=-x(-$\frac{4}{5}$≤x≤0)D.y=-$\frac{1}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)为定义在R上的可导函数,且f(x)>f′(x)对于x∈R恒成立.若e为自然对数的底数,则下列关系一定成立的是(  )
A.e2015f(2015)>e2016f(2016)B.e2015f(2015)<e2016f(2016)
C.e2015f(2016)>e2016f(2015)D.e2015f(2016)<e2016f(2015)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某几何体的三视图如图所示,则该几何体的体积为24.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.平面直角坐标系xOy中,点A(-2,0),B(2,0),直线AM,BM相交于点M,且它们的斜率之积是$-\frac{3}{4}$.
(1)求点M的轨迹C的方程;
(2)直线l:y=x-1与曲线C相交于P1,P2两点,Q是x轴上一点,若△P1P2Q的面积为$6\sqrt{2}$,求Q点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点F是抛物线y2=2px(p>0)的焦点,P(2,y0)是抛物线上一点,若|PF|=3,则p=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,平面PAB⊥平面ABCD,AB∥CD,AB⊥AD,CD=2AB,E为PA的中点,M在PD上.
(I)求证:AD⊥PB;
(Ⅱ)若$\frac{PM}{PD}=λ$,则当λ为何值时,平面BEM⊥平面PAB?
(Ⅲ)在(II)的条件下,求证:PC∥平面BEM.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如表提供了某新生婴儿成长过程中时间x(月)与相应的体重y(公斤)的几组对照数据.
 x0123
 y33.54.55
(1)如y与x具有较好的线性关系,请根据表中提供的数据,求出线性回归方程:$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)由此推测当婴儿生长到五个月时的体重为多少?
参考公式:$\stackrel{∧}{y}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}{b}$$\overline{x}$;$\sum_{i=1}^{4}{x}_{i}{y}_{i}$=27.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知命题p:2和8的等比中项是4;命题q:平面内到两个定点F1,F2的距离之差等于常数2a(|F1F2|<2a)的点的轨迹是双曲线,则下列命题为真命题的是(  )
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

同步练习册答案