精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

已知圆和直线.

(Ⅰ)求的参数方程以及圆上距离直线最远的点坐标;

(Ⅱ)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,将圆上除点以外所有点绕着逆时针旋转得到曲线,求曲线的极坐标方程.

【答案】(1)(2)

【解析】试题分析:(Ⅰ)根据可得圆的参数方程,由直线的位置可得当时,圆上的点距离直线最远,即可得点坐标;(Ⅱ)得的极坐标方程为,该变换为,由相关点法可得结果.

试题解析:(Ⅰ) 的参数方程为为参数,

易得直线与圆均过坐标原点,且直线的倾斜角为

所以当时,圆上的点距离直线最远,

所以点的坐标为.

(Ⅱ)由 可得的极坐标方程为

上除极点外的某一点的极坐标为,旋转后成为

由相关点法,回代入

可得的极坐标方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若二次函数f(x)=ax2+bx+c(a,b,c∈R)满足f(x+1)﹣f(x)=4x+1,且f(0)=3.
(1)求f(x)的解析式;
(2)设g(x)=f(2x),求g(x)在[﹣3,0]的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C与x轴相切,圆心C在射线3x﹣y=0(x>0)上,直线x﹣y=0被圆C截得的弦长为2
(1)求圆C标准方程;
(2)若点Q在直线l1:x+y+1=0上,经过点Q直线l2与圆C相切于p点,求|QP|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=logax,g(x)=loga(2x+t﹣2)2 , (a>0,a≠1,t∈R).
(1)当t=4,x∈[1,2]时F(x)=g(x)﹣f(x)有最小值为2,求a的值;
(2)当0<a<1,x∈[1,2]时,有f(x)≥g(x)恒成立,求实数t的取值范围.
(备注:函数y=x+ 在区间(0,1)上单调递减,在区间(1,+∞)上单调递增).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在定义域内既是奇函数又是减函数的是(
A.y=
B.y=﹣x+
C.y=﹣x|x|
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)= 是奇函数.
(1)求b的值;
(2)判断函数f(x)在R上的单调性并加以证明;
(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线x+ay﹣1=0是圆C:x2+y2﹣4x﹣2y+1=0的对称轴,过点A(﹣4,a)作圆C的一条切线,切点为B,则|AB|=(
A.2
B.6
C.4
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式ax2+2x+b>0(a≠0)的解集为 ,且a>b,则 的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知直二面角α﹣AB﹣β,P∈α,Q∈β,PQ与平面α,β所成的角都为30°,PQ=4,PC⊥AB,C为垂足,QD⊥AB,D为垂足,求:
(1)直线PQ与CD所成角的大小
(2)四面体PCDQ的体积.

查看答案和解析>>

同步练习册答案