精英家教网 > 高中数学 > 题目详情

【题目】已知向量 ,设
(Ⅰ)若f(α)=2,求 的值;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a﹣b)cosC=ccosB,求f(A)的取值范围.

【答案】解:(Ⅰ)向量

那么: = =

∵f(α)=2,即 =

(Ⅱ)∵(2a﹣b)cosC=ccosB,

∴(2sinA﹣sinB)cosC=sinCcosB,

2sinAcosC=sinBcosC+cosBsinC=sin(B+C),

∴2sinAcosC=sinA,

∵sinA≠0,

,∴

∴f(A)的取值范围为(2,3).


【解析】(Ⅰ)根据题意由两个向量的数量积运算公式可得出 f ( x )的解析式,结合已知利用余弦函数二倍角的关系式式即可求出结果。(Ⅱ)利用正弦定理结合两角和差的正弦公式即可得出2sinAcosC=sinA,进而可得出 cosC的值 故可求出角A的大小,再由已知角的取值范围得出的取值范围进而求出 f ( A ) 的取值范围即可。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)= 的图象与函数g(x)=log2(x+a)(a∈R)的图象恰有一个交点,则实数a的取值范围是( )
A.a>1
B.a≤﹣
C.a≥1或a<﹣
D.a>1或a≤﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在实数集R上的函数,满足条件y=f(x+1)是偶函数,且当x≥1时,f(x)= ,则 的大小关系是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(I)若 处的切线方程为 ,求 的值;
(II)若 上为增函数,求 得取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在一个坡度一定的山坡AC的顶上有一高度为25m的建筑物CD,为了测量该山坡相对于水平地面的坡角θ,在山坡的A处测得∠DAC=15°,沿山坡前进50m到达B处,又测得∠DBC=45°,根据以上数据可得cosθ=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若幂函数f(x)的图象过点 ,则函数g(x)=exf(x)的单调递减区间为( )
A.(-∞,0)
B.(-∞,-2)
C.(-2,-1)
D.(-2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=- x3 x2+2ax在 上存在单调递增区间,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ln(1+x)+mln(1-x)是偶函数,则( )
A.m=1,且f(x)在(0,1)上是增函数
B.m=1,且f(x)在(0,1)上是减函数
C.m=-1,且f(x)在(0,1)上是增函数
D.m=-1,且f(x)在(0,1)上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,用虚线表示的网格的小正方形边长为1,实线表示某几何体的三视图,则此几何体的外接球半径为( )

A.
B.
C.2
D.

查看答案和解析>>

同步练习册答案