精英家教网 > 高中数学 > 题目详情
(本小题满分7分)
已知函数
(Ⅰ)当时,求函数的定义域;
(Ⅱ)当函数的定义域为R时,求实数的取值范围。
(1).(2)

试题分析:解:(Ⅰ)当时,要使函数有意义,
有不等式成立,------------------① 
时,不等式①等价于,即,∴
时,不等式①等价于,∴无解
时,不等式①等价于,即,∴
综上函数的定义域为.      
(Ⅱ)∵函数的定义域为, ∴不等式恒成立,
∴只要即可,又
(当且仅当时取等)
,∴. ∴的取值范围是
点评:解决该试题的关键是利用绝对值的含义以及公式来分情况讨论求解得到,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

下面有四个结论:①偶函数的图像一定与轴相交。②奇函数的图像不一定过原点。③偶函数若在上是减函数,则在上一定是增函数。④有且只有一个函数既是奇函数又是偶函数。其中正确结论的个数是(   )
A.1B.2C.3 D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,则          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
若函数的定义域为,其中a、b为任
意正实数,且a<b。
(1)当A=时,研究的单调性(不必证明);
(2)写出的单调区间(不必证明),并求函数的最小值、最大值;
(3)若其中k是正整数,对一切正整数k不等式都有解,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知函数,其中
(1)若函数是偶函数,求函数在区间上的最小值;
(2)用函数的单调性的定义证明:当时,在区间上为减函数;
(3)当,函数的图象恒在函数图象上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数满足下述条件:对任意实数,当时,总有,则实数的取值范围是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的定义域为R,且定义如下:(其中M是实数集R的非空真子集),在实数集R上有两个非空真子集AB满足,则函数的值域为                           (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数是定义在实数集R上的不恒为零的偶函数,且对任意实数都有,则的值是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数由下表定义:

1
2
3
4
5

4
1
3
5
2
,则             

查看答案和解析>>

同步练习册答案