精英家教网 > 高中数学 > 题目详情
20.求函数f(x)=sin2xcosx的最大值.

分析 令 t=cosx∈[-1,1],求得f(x)=g(t)=t-t3,利用导数研究函数g(t)的单调性,从而求得g(t)的最大值.

解答 解:∵函数f(x)=sinx2cosx=cosx(1-cos2x),令 t=cosx∈[-1,1],
则f(x)=g(t)=t-t3,令g′(t)=1-3t2=0,求得t=±$\frac{1}{3}$.
在(-$\frac{1}{3}$,$\frac{1}{3}$)上,g′(t)>0,故g(t)的一个增区间为(-$\frac{1}{3}$,$\frac{1}{3}$);
在[-1,-$\frac{1}{3}$)、($\frac{1}{3}$,1]上,g′(t)<0,故g(t)减区间为[-1,-$\frac{1}{3}$)、($\frac{1}{3}$,1].
再根据g(-1)=0,g($\frac{1}{3}$)=$\frac{8}{27}$,可得g(t)的最大值为g($\frac{1}{3}$)=$\frac{8}{27}$.

点评 本题主要考查同角三角函数的基本关系,利用导数研究函数的单调性,利用单调性求函数的最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知x<-2,求函数y=2x+$\frac{1}{x+2}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.计算:$\sum_{r=1}^{r=n}$$\frac{r+2}{r!+(r+1)!+(r+2)!}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,有一直径为8米的半圆形空地,现计划种植甲、乙两种水果,已知单位面积种植水果的经济价值是种植乙水果经济价值的5倍,但种植甲水果需要有辅助光照.半圆周上的C处恰有一可旋转光源满足甲水果生产的需要,该光源照射范围是∠ECF=$\frac{π}{6}$,点E,F的直径AB上,且∠ABC=$\frac{π}{6}$.
(1)若CE=$\sqrt{13}$,求AE的长;
(2)设∠ACE=α,求该空地产生最大经济价值时种植甲种水果的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在数列{an}中,已知a1=2,an+1=2an-n+1,n∈N*
(1)求证:{an-n}是等比数列;
(2)令bn=$\frac{{a}_{n}}{{2}^{n}}$,Sn为数列{bn}的前n项和,求Sn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,已知F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,P、Q在渐近线上,PQ的中垂线过点F,O是坐标原点,若∠PFQ=Rt∠,OQ=3OP,则双曲线的离心率等于(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{5}$C.$\frac{5}{4}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某研究机构抽取五名高三学生甲、乙、丙、丁、戊,对他们的记忆力x和判断力y进行统计分析,得到的结果如表所示,根据表中的数据回答下列问题:
编号
x68101214
y23456
(1)从这五名学生中任选两名,求选出的两名学生的记忆力均超过8的概率;
(2)求记忆力x和判断力y的回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,并据此推测记忆力为20的学生的判断力大约是多少?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.下列写法是否正确,说明理由
①{(1,2)}={(2,1)}={(x,y)|x=1,或y=2}={1,2}
②{y|y=-x2+2,x∈R}∩{y|y=-x+2,x∈R}={(0,2),(1,1)}
③0∈∅,∅?{0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.命题“?x∈R,ex>x2”的否定是(  )
A.不存在x∈R,使ex>x2B.?x0∈R,使ex0<x02
C.?x0∈R,使ex0≤x02D.?x∈R,使ex≤x2

查看答案和解析>>

同步练习册答案