精英家教网 > 高中数学 > 题目详情
是两条不同的直线,是两个不同的平面,下列命题中正确的是(   )
A.若,则
B.若,则
C.若,则
D.若,则.
D
.若,则.,是利用空间向量法求两面角的依据.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知棱柱的底面是菱形,且面为棱的中点,为线段的中点,
(1)求证:

(2)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图5,正△的边长为4,边上的高,分别是边的中点,现将△沿翻折成直二面角
(1)试判断直线与平面的位置关系,并说明理由;
(2)求二面角的余弦值;
(3)在线段上是否存在一点,使?如果存在,求出的值;如果不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在三棱锥中,底面是边长为4的正三角形,平面,M,N分别为AB,SB的中点.

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方体ABCD-A1B1C1D1中,下列结论正确的是( )
A.A1C1∥ADB.C1D1⊥AB
C.AC1与CD成45°角 D.A1C1与B1C成60°角

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体ABCD-A1B1C1D1中,E为A1C1的中点,则直线CE垂直于  (   )
A.直线ACB.直线B1D1
C.直线A1D1D.直线A1A

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是不同的平面,是不同的直线,给出下列命题:
①若,则
②若,则
③若是异面直线,则相交;
④若,且,则.
其中真命题的个数是
A.1B.2 C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正三棱锥中,直线所成的角的大小为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线lm与平面满足,则有
A.  B.
C.  D.

查看答案和解析>>

同步练习册答案