精英家教网 > 高中数学 > 题目详情
7.抛物线y2=8x的焦点坐标是(  )
A.(-2,0)B.(0,-2)C.(2,0)D.(0,2)

分析 根据抛物线的标准方程,进而可求得p,根据抛物线的性质进而可得焦点坐标.

解答 解:抛物线y2=8x,
所以p=4,
所以焦点(2,0),
故选C.

点评 本题考查抛物线的焦点,部分学生因不会求p,或求出p后,误认为焦点(p,0),还有没有弄清楚焦点位置,从而得出错误结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若实数x,y满足约束条件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}\right.$,则目标函数z=2x+y的最小值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax3+x,g(x)=x2+px+q.
(Ⅰ)若函数f(x)在x=1处取得极值,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,函数F(x)=f'(x)g(x)(其中f'(x)为函数f(x)的导数)的图象关于直线x=-1对称,求函数F(x)单调区间;
(Ⅲ)在(Ⅱ)的条件下,若对任意的x≥1,都有g(x)≥(6+λ)x-λlnx+3恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.正整数列{an},{bn}满足:a1≥b1,且对一切k≥2,k∈N*,ak是ak-1与bk-1的等差中项,bk是ak-1与bk-1的等比中项.
(1)若a2=2,b2=1,求a1,b1的值;
(2)求证:{an}是等差数列的充要条件是{an}为常数数列;
(3)记cn=|an-bn|,当n≥2(n∈N*)时,指出c2+…+cn与c1的大小关系并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知在△ABC中,a,b,c分别是∠BAC,∠ABC,∠ACB的对边,若过点C作垂直于AB的垂线CD,且CD=h,则下列给出的关于a,b,c,h的不等式中正确的是(  )
A.a+b≥$\sqrt{2{h}^{2}+2{c}^{2}}$B.a+b≥$\sqrt{4{h}^{2}+{c}^{2}}$C.a+b≥$\sqrt{4{h}^{2}+2{c}^{2}}$D.a+b≥$\sqrt{{h}^{2}+2{c}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{an}(n∈N*)的前12项,如表所示.
a1a2a3a4a5a6a7a8a9a10a11a12
x1y1x2y2x3y3x4y4x5y5x6y6
按如此规律下去,则a2009+a2010+a2011等于(  )
A.1 003B.1 005C.1 006D.2 010

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.实验中学学生会将在5月份对各部进行改选,劳动部现从高一甲、乙、丙、丁四个人中选两名劳动部长,则甲被选中的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设a,b∈R,c∈[0,2π),若对任意实数x都有2sin(3x-$\frac{π}{3}$)=asin(bx+c),定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点横坐标为d,则满足条件的有序实数组(a,b,c,d)的组数为28.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求值化简:
(1)$\frac{{1+\frac{1}{2}lg9-lg240}}{{1-\frac{2}{3}lg27+lg\frac{36}{5}}}$+1
(2)$\frac{{{{({a^{\frac{2}{3}}}•{b^{-1}})}^{-\frac{1}{2}}}•{a^{\frac{1}{2}}}•{b^{\frac{1}{3}}}}}{{\root{6}{{a•{b^5}}}}}$.

查看答案和解析>>

同步练习册答案