精英家教网 > 高中数学 > 题目详情
16.设a,b∈R,c∈[0,2π),若对任意实数x都有2sin(3x-$\frac{π}{3}$)=asin(bx+c),定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点横坐标为d,则满足条件的有序实数组(a,b,c,d)的组数为28.

分析 首先由已知等式求得a值,然后利用三角恒等变换sin2x=cosx求出所有根的个数,最后利用排列组合的思想求得满足条件的有序实数组.

解答 解:∵对任意实数x都有2sin(3x-$\frac{π}{3}$)=asin(bx+c),∴|a|=2,
若a=2,则方程等价于sin(3x-$\frac{π}{3}$)=sin(bx+c),则函数的周期相同,
若b=3,此时c=$\frac{5π}{3}$;若b=-3,此时c=$\frac{4π}{3}$;
若a=-2,则方程等价于sin(3x-$\frac{π}{3}$)=-sin(bx+c)=sin(-bx-c),
若b=-3,此时c=$\frac{π}{3}$;若b=3,此时c=$\frac{2π}{3}$.
综上,满足条件的数组(a,b,c,)为(2,3,$\frac{5π}{3}$),(2,-3,$\frac{4π}{3}$),
(-2,-3,$\frac{π}{3}$),(-2,3,$\frac{2π}{3}$)共4组.
而当sin2x=cosx时,2sinxcosx=cosx,得cosx=0或sinx=$\frac{1}{2}$,
∴x=$\frac{π}{2}$+kπ或x=$\frac{π}{6}$+2kπ,k∈Z
又∵x∈[0,3π],∴x=$\frac{π}{2},\frac{3π}{2},\frac{5π}{2},\frac{π}{6},\frac{13π}{6},\frac{5π}{6},\frac{17π}{6}$.
∴满足条件的有序数组(a,b,c,d)共有4×7=28.
故答案为28.

点评 本题考查三角函数的周期性、三角函数的恒等变换及三角函数的图象和性质,考查渗透转化与化归思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.“sinα=cosα”是“$α=\frac{π}{4}+2kπ,(k∈Z)$”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.抛物线y2=8x的焦点坐标是(  )
A.(-2,0)B.(0,-2)C.(2,0)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知命题p:2x2-9x+a<0,命题q:x2-5x+6<0,且非p是非q的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在数列{an}中,a1=2,an+1=3an-2n+1,n∈N*
(Ⅰ)设数列bn=an-n,证明数列{bn}是等比数列;
(Ⅱ)求数列{an}的前n项和Sn
(Ⅲ)当n≥2且n∈N*时,证明不等式Sn+1<3Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,在平面四边形ABCD中,AB=8,AD=5,CD=3$\sqrt{3}$,∠A=60°,∠D=150°,则BC=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,△ABC与△ABD都是以AB为斜边的直角三角形,O为线段AB上一点,BD平分∠ABC,且OD∥BC.
(1)证明:A,B,C,D四点共圆,且O为圆心;
(2)AC与BD相交于点F,若BC=2CF=6,AF=5,求C,D之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\frac{1}{3}$x3+x2+ax.若g(x)=$\frac{1}{e^x}$,对任意x1∈[$\frac{1}{2}$,2],存在x2∈[$\frac{1}{2}$,2],使f'(x1)≤g(x2)成立,则实数a的取值范围是(  )
A.$(-∞,\frac{{\sqrt{e}}}{e}-8]$B.$[\frac{{\sqrt{e}}}{e}-8,+∞)$C.$[\sqrt{2},e)$D.$(-\frac{{\sqrt{3}}}{3},\frac{e}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设全集U={-1,1,3,5,7},集合A={1,|3-a|,5},若∁UA={-1,7},则实数a的值是(  )
A.0B.6C.-4或10D.0或6

查看答案和解析>>

同步练习册答案