分析 (1)利用△ABC与△ABD都是以AB为斜边的直角三角形,可得A,B,C,D四点都在以AB为直径的圆上,证明O是AB的中点,可得O为圆心;
(2)由Rt△ADF∽Rt△BCF得$\frac{AD}{DF}$=$\frac{BC}{CF}$=2,由BD平分∠ABC得$\frac{BD}{DA}$=$\frac{BC}{CF}$=2,求出AD,即可得出结论.
解答
(1)证明:因为△ABC与△ABD都是以AB为斜边的直角三角形,
所以A,B,C,D四点都在以AB为直径的圆上.
因为BD平分∠ABC,且OD∥BC,
所以∠OBD=∠CBD=∠ODB,OB=OD.
又∠OAD+∠OBD=90°,∠ODA+∠ODB=90°,
所以∠OAD=∠ODA,OA=OD.
所以OA=OB,O是AB的中点,O为圆心.…(5分)
(2)解:由BC=2CF=6,得BF=3$\sqrt{5}$,
由Rt△ADF∽Rt△BCF得$\frac{AD}{DF}$=$\frac{BC}{CF}$=2.
设AD=2DF=2x,则AF=$\sqrt{5}$x,
由BD平分∠ABC得$\frac{BD}{DA}$=$\frac{BC}{CF}$=2,
所以$\frac{3\sqrt{5}+x}{2x}$=2,解得x=$\sqrt{5}$,即AD=2$\sqrt{5}$.
连CD,由(1),CD=AD=2$\sqrt{5}$.…(10分)
点评 本题考查四点共圆的证明,考查三角形相似的判定与性质,考查角平分线的性质,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com