精英家教网 > 高中数学 > 题目详情
12.如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{an}(n∈N*)的前12项,如表所示.
a1a2a3a4a5a6a7a8a9a10a11a12
x1y1x2y2x3y3x4y4x5y5x6y6
按如此规律下去,则a2009+a2010+a2011等于(  )
A.1 003B.1 005C.1 006D.2 010

分析 奇数项为1,-1,2,-2…,发现a2n-1+a2n+1=0,偶数项为1,2,3…,所以a2n=n.当2n-1=2009时,n=1005,故a2009+a2011=0.当2n=2010,a2010=1005.

解答 解:奇数项,偶数项分开看,
奇数项为1,-1,2,-2…,发现a2n-1+a2n+1=0,
偶数项为1,2,3…,所以a2n=n
当2n-1=2009时,n=1005,故a2009+a2011=0.
当2n=2010,a2010=1005.
∴a2009+a2010+a2011=1005.
故选B.

点评 本题考查数列的性质和应用,解题的关键是明确题意,找出数字的变化规律.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥中P-ABCD,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2$\sqrt{2}$,BC=4$\sqrt{2}$,PA=2.

(1)求证:AB⊥PC;
(2)在线段PD上,是否存在一点M,使得二面角M-AC-D的大小为45°,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设变量x、y满足约束条件$\left\{\begin{array}{l}3x+y-6≥0\\ x-y-2≤0\\ y-3≤0\end{array}\right.$,则目标函数z=4x+y的最小值为(  )
A.-6B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.自变量x取什么值时,下列函数为无穷小.
(1)y=$\frac{1}{{x}^{2}}$;
(2)y=2x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.抛物线y2=8x的焦点坐标是(  )
A.(-2,0)B.(0,-2)C.(2,0)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知,焦点在x轴上的椭圆的上、下顶点分别为B2、B1,左焦点和右顶点分别为F、A1.经过点B2的直线l与以椭圆的中心为顶点、B2为焦点的抛物线交于A、B两点,且点B2恰为线段AB的三等分点,直线l1过点B1且垂直于y轴,线段AB的中点M到直线l1的距离为$\frac{9}{4}$.若$\overrightarrow{F{B}_{2}}$•$\overrightarrow{{A}_{1}{B}_{2}}$=1-2$\sqrt{3}$,则椭圆的标准方程是(  )
A.$\frac{{x}^{2}}{4}$+y2=1B.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1C.$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{3}$+y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知命题p:2x2-9x+a<0,命题q:x2-5x+6<0,且非p是非q的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,在平面四边形ABCD中,AB=8,AD=5,CD=3$\sqrt{3}$,∠A=60°,∠D=150°,则BC=7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)是定义在R上的偶函数,在(-∞,0)上对任意两个不相等的实数a,b总有$\frac{f(a)-f(b)}{a-b}$>0,且f(2)=0,则使xf(x)<0的x的取值范围是(  )
A.-2<x<2B.x>2或-2<x<0C.-2<x<0D.x<-2或x>2

查看答案和解析>>

同步练习册答案