精英家教网 > 高中数学 > 题目详情
4.在椭圆$\frac{{x}^{2}}{16}$$+\frac{{y}^{2}}{9}$=1内,通过点M(1,1)且被这点平分的弦所在的直线方程为(  )
A.9x-16y+7=0B.16x+9y-25=0C.9x+16y-25=0D.16x-9y-7=0

分析 设出以点M(1,1)为中点的弦两端点为P1(x1,y1),P2(x2,y2),利用点差法可求得以M(1,1)为中点的弦所在直线的斜率.再由点斜式可求得直线方程.

解答 解:设以点M(1,1)为中点的弦两端点为P1(x1,y1),P2(x2,y2),
则x1+x2=2,y1+y2=2.
又$\frac{{{x}_{1}}^{2}}{16}+\frac{{{y}_{1}}^{2}}{9}=1$,①,
$\frac{{{x}_{2}}^{2}}{16}+\frac{{{y}_{2}}^{2}}{9}=1$  ②
①-②得:$\frac{({x}_{1}-{x}_{2})({x}_{1}+{x}_{2})}{16}+\frac{({y}_{1}-{y}_{2})({y}_{1}+{y}_{2})}{9}$=0
又据对称性知x1≠x2
则$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{9}{16}$,
∴以点M(1,1)为中点的弦所在直线的斜率k=-$\frac{9}{16}$,
∴中点弦所在直线方程为y-1=-$\frac{9}{16}$(x-1),
即9x+16y-25=0.
故选:C

点评 本题主要考查了直线与椭圆相交关系的应用,要掌握这种设而不求以及点差法在求解直线方程中的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=$\frac{1}{2}$AP=2,D是AP的中点,E,F,G分别为PC、PD、CB的中点,将△PCD沿CD折起,使得PD⊥平面ABCD.

(1)求证:平面PCD⊥平面PAD;
(2)求面GEF与面EFD所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f(n)=($\frac{1+i}{1-i}$)n+($\frac{1-i}{1+i}$)n(n∈N*),则集合{x|x=f(n)}的子集有(  )
A.2个B.4个C.8个D.无穷多个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=\frac{lnx+1}{x}$,
(Ⅰ)求函数f(x)的单调区间,并判断是否有极值;
(Ⅱ)若对任意的x>1,恒有ln(x-1)+k+1≤kx成立,求k的取值范围;
(Ⅲ)证明:$\frac{ln2}{2^2}+\frac{ln3}{3^2}+…+\frac{lnn}{n^2}<\frac{{2{n^2}-n-1}}{4(n+1)}$(n∈N+,n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,长方体ABCD-A1B1C1D1中,AA1=A1B1=2,BC=$\sqrt{2}$
(Ⅰ)若E为线段CC1的中点,求证:平面A1BE⊥平面B1CD;
(Ⅱ)若点P为侧面A1ABB1(包含边界)内的一个动点,且 C1P∥平面A1BE,求线段C1P长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,M为棱AC中点.AB=BC,AC=2,AA1=$\sqrt{2}$.
(Ⅰ)求证:B1C∥平面A1BM;
(Ⅱ)求证:AC1⊥平面A1BM;
(Ⅲ)在棱BB1的上是否存在点N,使得平面AC1N⊥平面AA1C1C?如果存在,求此时$\frac{BN}{{B{B_1}}}$的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求证:an+1+(a+1)2n-1能被a2+a+1整除,n∈N+,a∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知实数x,y满足$\left\{\begin{array}{l}{(x-y+6)(x+y-6)≥0}\\{1≤x≤4}\end{array}\right.$
(1)求x2+y2-2的取值范围;
(2)求$\frac{y}{x-3}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.tan$\frac{A}{2}$=$\frac{m}{n}$(mn≠0),则mcosA-nsinA的值是(  )
A.nB.-nC.mD.-m

查看答案和解析>>

同步练习册答案