分析 (Ⅰ)证明BD⊥平面PAC,利用平面与平面垂直的判定定理证明平面PBD⊥平面PAC;
(Ⅱ)利用VC-PBD=VP-BCD,根据体积公式,求PA的长.
解答 (Ⅰ)证明:因为底面ABCD是菱形,
所以BD⊥AC.
因为PA⊥平面ABCD,BD?平面ABCD,
所以PA⊥BD.又AC∩PA=A,
所以BD⊥平面PAC.-----------------(4分)
又BD?平面PBD,所以平面PBD⊥平面PAC. …(6分)
(Ⅱ)解:因为底面ABCD是菱形,且AB=2,∠BAD=60°,
所以${S_{△BCD}}=\sqrt{3}$.
又VC-PBD=VP-BCD,三棱锥P-BCD的高为PA,
所以$\frac{1}{3}×\sqrt{3}×PA=\frac{{\sqrt{3}}}{2}$,解得$PA=\frac{3}{2}$. …(12分)
点评 本题考查平面与平面、直线与平面垂直的判定,考查三棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 恰有1只是坏的概率 | B. | 2只都是坏的概率 | ||
| C. | 恰有1只是好的概率 | D. | 至多1只是坏的概率 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com