16£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1µÄ×ó¶¥µãΪA£¬ÓÒ½¹µãΪF£¬P£¬QΪÍÖÔ²CÉÏÁ½µã£¬Ô²O£ºx2+y2=r2£¨r£¾0£©£®
£¨1£©ÈôPF¡ÍxÖᣬÇÒÂú×ãÖ±ÏßAPÓëÔ²OÏàÇУ¬ÇóÔ²OµÄ·½³Ì£»
£¨2£©ÈôÔ²OµÄ°ë¾¶Îª$\sqrt{3}$£¬µãP£¬QÂú×ãkOP•kOQ=-$\frac{3}{4}$£¬ÇóÖ±ÏßPQ±»Ô²O½ØµÃÏÒ³¤µÄ×î´óÖµ£®

·ÖÎö £¨1£©ÓÉÌâÒâ·½³ÌÇó³öPµÄ×ø±ê£¬µÃµ½Ö±ÏßPAµÄ·½³Ì£¬Óɵ㵽ֱÏߵľàÀ빫ʽÇó³öÔ²µÄ°ë¾¶£¬ÔòÔ²µÄ·½³Ì¿ÉÇó£»
£¨2£©ÓÉÒÑÖªÇóµÃÔ²µÄ·½³Ì£¬µ±PQ¡ÍxÖáʱ£¬ÓÉkOP•kOQ=-$\frac{3}{4}$Çó³öOPµÄбÂÊ£¬¿ÉµÃPµÄ×ø±ê£¬ÓɶԳÆÐԵõ½QµÄ×ø±ê£¬ÔòÖ±ÏßPQ±»Ô²O½ØµÃÏÒ³¤¿ÉÇó£»µ±PQÓëxÖá²»´¹Ö±Ê±£¬ÉèÖ±ÏßPQµÄ·½³ÌΪy=kx+b£¬ÓÉkOP•kOQ=-$\frac{3}{4}$£¬µÃµ½P£¬Qºá×ø±êµÄºÍÓë»ýµÄ¹ØÏµ£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì¿ÉµÃkÓëbµÄ¹ØÏµ£¬ÔÙÓÉ´¹¾¶¶¨ÀíÇóµÃÏÒ³¤×î´óÖµ£¬×ÛºÏÁ½ÖÖÇé¿öÇóµÃÖ±ÏßPQ±»Ô²O½ØµÃÏÒ³¤µÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£¬
¡àA£¨-2£¬0£©£¬F£¨1£¬0£©£¬
¡ßPF¡ÍxÖᣬ
¡àP£¨1£¬$¡À\frac{3}{2}$£©£¬¶øÖ±ÏßAPÓëÔ²OÏàÇУ¬
¸ù¾Ý¶Ô³ÆÐÔ£¬¿ÉÈ¡P£¨1£¬$\frac{3}{2}$£©£¬
ÔòÖ±ÏßAPµÄ·½³ÌΪy=$\frac{1}{2}£¨x+2£©$£¬
¼´x-2y+2=0£®
ÓÉÔ²OÓëÖ±ÏßAPÏàÇУ¬µÃr=$\frac{2}{\sqrt{5}}$£¬
¡àÔ²OµÄ·½³ÌΪ${x}^{2}+{y}^{2}=\frac{4}{5}$£»
£¨2£©ÓÉÌâÒâÖª£¬Ô²OµÄ·½³ÌΪx2+y2=3£®
¢Ùµ±PQ¡ÍxÖáʱ£¬${k}_{OP}•{k}_{OQ}=-{{k}_{OP}}^{2}=-\frac{3}{4}$£¬
¡à${k}_{OP}=¡À\frac{\sqrt{3}}{2}$£¬
²»·ÁÉèOP£ºy=$\frac{\sqrt{3}}{2}x$£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=\frac{\sqrt{3}}{2}x}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬½âµÃP£¨$\sqrt{2}$£¬$\frac{\sqrt{6}}{2}$£©£¬
´ËʱµÃÖ±ÏßPQ±»Ô²O½ØµÃµÄÏÒ³¤Îª$\frac{\sqrt{570}}{15}$£»
¢Úµ±PQÓëxÖá²»´¹Ö±Ê±£¬ÉèÖ±ÏßPQµÄ·½³ÌΪy=kx+b£¬P£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¨x1x2¡Ù0£©£¬
Ê×ÏÈÓÉ${k}_{OP}•{k}_{OQ}=-\frac{3}{4}$£¬µÃ3x1x+4y1y2=0£¬
¼´3x1x2+4£¨kx1+b£©£¨kx2+b£©=0£¬
$£¨3+4{k}^{2}£©{x}_{1}{x}_{2}+4kb£¨{x}_{1}+{x}_{2}£©+4{b}^{2}=0$£¨*£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+b}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬ÏûÈ¥x£¬µÃ£¨3+4k2£©x2+8kbx+4b2-12=0£¬
½«${x}_{1}+{x}_{2}=-\frac{8kb}{3+4{k}^{2}}£¬{x}_{1}{x}_{2}=\frac{4{b}^{2}-12}{3+4{k}^{2}}$´úÈ루*£©Ê½£¬µÃ2b2=4k2+3£®
ÓÉÓÚÔ²ÐÄOµ½Ö±ÏßPQµÄ¾àÀëΪ$d=\frac{|b|}{\sqrt{{k}^{2}+1}}$£¬
¡àÖ±ÏßPQ±»Ô²O½ØµÃµÄÏÒ³¤Îª$l=2\sqrt{3-{d}^{2}}=\sqrt{4+\frac{2}{{k}^{2}+1}}$£¬
¹Êµ±k=0ʱ£¬lÓÐ×î´óֵΪ$\sqrt{6}$£®
×ÛÉÏ£¬Ö±ÏßPQ±»Ô²O½ØµÃµÄÏÒ³¤µÄ×î´óֵΪ$\sqrt{6}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÁËÖ±ÏßÓëÔ²¡¢ÍÖԲλÖùØÏµµÄÓ¦Óã¬ÌåÏÖÁË¡°Éè¶ø²»Ç󡱵ĽâÌâ˼Ïë·½·¨ºÍÊýѧת»¯Ë¼Ïë·½·¨£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Ä³Ð£8Ãûͬѧ²Î¼ÓѧУ×éÖ¯µÄÉç»áʵ¼ù»î¶¯£¬ÔÚijһ»î¶¯ÖУ¬ÒªÅɳö3ÃûͬѧÏȺó²ÎÓ룬²¢ÇÒÍê³ÉÈÎÎñ£¬ÒÑÖª¸Ã»î¶¯ÖÐA£¬B£¬CÈýÈËÖÁ¶àÒ»È˲ÎÓ룬ÈôA²Î¼Ó£¬ÔòDÒ²»á²Î¼Ó£¬ÇÒA±ØÐë×îÏÈÍê³ÉÈÎÎñ£¬Ôò²»Í¬µÄ°²ÅÅ·½°¸ÓУ¨¡¡¡¡£©
A£®70B£®168C£®188D£®228

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬PA¡ÍÆ½ÃæABCD£¬µ×ÃæABCDÊÇÁâÐΣ¬µãOÊǶԽÇÏßACÓëBDµÄ½»µã£¬AB=2£¬¡ÏBAD=60¡ã£¬
£¨¢ñ£©ÇóÖ¤£ºÆ½ÃæPBD¡ÍÆ½ÃæPAC£»
£¨¢ò£©µ±ÈýÀâ×¶C-PBDµÄÌå»ýµÈÓÚ$\frac{{\sqrt{3}}}{2}$ʱ£¬ÇóPAµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬µ×ÃæABCDÊÇÕý·½ÐΣ¬PD¡ÍÆ½ÃæABCD£¬µãEÊÇÏß¶ÎBDµÄÖе㣬µãFÊÇÏß¶ÎPDÉϵ͝µã£®
£¨1£©ÇóÖ¤£ºCE¡ÍBF£»
£¨2£©ÈôAB=2£¬PD=3£¬µ±ÈýÀâ×¶P-BCFµÄÌå»ýµÈÓÚ$\frac{4}{3}$ʱ£¬ÊÔÅжϵãFÔÚ±ßPDÉϵÄλÖ㬲¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÈçͼËùʾ£¬°ë¾¶Îª1µÄÇòÄÚÇÐÓÚÕýÈýÀâ×¶P-ABCÖУ¬Ôò´ËÕýÈýÀâ×¶Ìå»ýµÄ×îСֵΪ8$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Í¬Ê±Å×ÖÀÈýöÖʵؾùÔÈ¡¢´óСÏàͬµÄÓ²±ÒÒ»´Î£¬ÔòÖÁÉÙÓÐÁ½Ã¶Ó²±ÒÕýÃæÏòÉϵĸÅÂÊΪ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®½«º¯Êýf£¨x£©=ax£¨a£¾0ÇÒa¡Ù1£©µÄͼÏóÉϸ÷µãµÄºá×ø±êÉ쳤ΪԭÀ´µÄ2±¶£¬×Ý×ø±ê²»±ä£¬µÃµ½µÄͼÏóÓëy=2${\;}^{-\frac{x}{2}}$µÄͼÏóÖØºÏ£¬ÔòʵÊýaµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®2C£®3D£®$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èô£¨ax-1£©6µÄÕ¹¿ªÊ½ÖеÚ4ÏîµÄϵÊýΪ160£¬Ôòa=-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®£¨1£©Èç¹ûÈý½ÇÐεı߳¤a¡¢b¡¢cÂú×ãµÈʽa2+b2+c2=ab+bc+ca£¬ÇóÖ¤£º´ËÈý½ÇÐÎÒ»¶¨ÊÇÕýÈý½ÇÐΣ»
£¨2£©Èôa¡¢b¡¢c¡¢$\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$½ÔΪÓÐÀíÊý£¬Ö¤Ã÷£º$\sqrt{a}$¡¢$\sqrt{b}$¡¢$\sqrt{c}$ΪÓÐÀíÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸