分析 (1)由底面正方形可得CE⊥BD,由PD⊥平面ABCD得PD⊥CE,故而CE⊥平面PBD,所以CE⊥BF;
(2)由PD⊥平面ABCD可得PD⊥BD,设PF=x,则VP-BCF=$\frac{1}{3}{S}_{△BPF}•CE$=$\frac{4}{3}$,列方程解出PF.
解答 证明:(1)∵PD⊥平面ABCD,CE?平面ABCD,
∴PD⊥CE.
∵底面ABCD是正方形,点E是BD的中点,
∴CE⊥BD,又BD?平面PBD,PD?平面PBD,BD∩PD=D,
∴CE⊥平面PBD,∵BF?平面PCD,
∴CE⊥BF.
(2)解:点F为边PD上靠近D点的三等分点.
说明如下:由(Ⅱ)可知,CE⊥平面PBF.
∵PD⊥平面ABCD,BD?平面ABCD,
∴PD⊥BD.
设PF=x. 由AB=2得BD=2$\sqrt{2}$,CE=$\sqrt{2}$,
∴VP-BCF=VC-BPF=$\frac{1}{3}×\frac{1}{2}×BD×PF×CE$=$\frac{1}{6}×2\sqrt{2}×\sqrt{2}x$=$\frac{4}{3}$.
解得x=2.∵PD=3,
∴点F为边PD上靠近D点的三等分点.
点评 本题考查了线面垂直的判定与性质,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $8+\frac{π}{2}$ | B. | 8+π | C. | $12+\frac{π}{2}$ | D. | 12+π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 24 | B. | 36 | C. | 48 | D. | 72 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$x±y=0 | B. | x±$\sqrt{3}$y=0 | C. | x±$\sqrt{2}$y=0 | D. | $\sqrt{3}$x±y=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com