精英家教网 > 高中数学 > 题目详情
4.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥平面ABCD,点E是线段BD的中点,点F是线段PD上的动点.
(1)求证:CE⊥BF;
(2)若AB=2,PD=3,当三棱锥P-BCF的体积等于$\frac{4}{3}$时,试判断点F在边PD上的位置,并说明理由.

分析 (1)由底面正方形可得CE⊥BD,由PD⊥平面ABCD得PD⊥CE,故而CE⊥平面PBD,所以CE⊥BF;
(2)由PD⊥平面ABCD可得PD⊥BD,设PF=x,则VP-BCF=$\frac{1}{3}{S}_{△BPF}•CE$=$\frac{4}{3}$,列方程解出PF.

解答 证明:(1)∵PD⊥平面ABCD,CE?平面ABCD,
∴PD⊥CE.
∵底面ABCD是正方形,点E是BD的中点,
∴CE⊥BD,又BD?平面PBD,PD?平面PBD,BD∩PD=D,
∴CE⊥平面PBD,∵BF?平面PCD,
∴CE⊥BF. 
(2)解:点F为边PD上靠近D点的三等分点.
说明如下:由(Ⅱ)可知,CE⊥平面PBF.
∵PD⊥平面ABCD,BD?平面ABCD,
∴PD⊥BD.
设PF=x. 由AB=2得BD=2$\sqrt{2}$,CE=$\sqrt{2}$,
∴VP-BCF=VC-BPF=$\frac{1}{3}×\frac{1}{2}×BD×PF×CE$=$\frac{1}{6}×2\sqrt{2}×\sqrt{2}x$=$\frac{4}{3}$.
解得x=2.∵PD=3,
∴点F为边PD上靠近D点的三等分点.

点评 本题考查了线面垂直的判定与性质,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.一个商店销售某种型号的电视机,其中本地的产品有4种,外地的产品有7种,要买1台这种型号的电视机,有多少种不同的选法?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.等比数列{an}的前n项和为Sn,已知S3=a1+3a2,a4=8,则a1=(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=x2-1的图象上一点(1,0)处的切线的斜率为(  )
A.1B.2C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.现有数字1,2,3,4,5
(1)能组成多少个没有重复数字的五位数?
(2)如果从(1)中的所得的五位数中任取一个,那么所得数字恰能被5整除的概率是多少?
(3)如果将(1)中的所得的五位数按从小到大排列
①现从中任取5个数,取后放回,求所得的5个数中能被5整除的数字的个数X的概率分布及数学期望
②“43215”是第几个数?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示,有一条长度为1的线段MN,其端点M,N在边长为3的正方形ABCD的四边上滑动,当点N绕着正方形的四边滑动一周时,MN的中点P所形成轨迹的长度为(  )
A.$8+\frac{π}{2}$B.8+πC.$12+\frac{π}{2}$D.12+π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左顶点为A,右焦点为F,P,Q为椭圆C上两点,圆O:x2+y2=r2(r>0).
(1)若PF⊥x轴,且满足直线AP与圆O相切,求圆O的方程;
(2)若圆O的半径为$\sqrt{3}$,点P,Q满足kOP•kOQ=-$\frac{3}{4}$,求直线PQ被圆O截得弦长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某大学数学系需要安排6名大四同学到A,B,C三所学校实习,每所学校安排2名同学,已知甲不能到A学校,乙和丙不能安排到同一所学校,则安排方案的种数有(  )
A.24B.36C.48D.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F与虚轴的两个端点构成的三角形为等边三角形,则双曲线C的渐近线方程为(  )
A.$\sqrt{2}$x±y=0B.x±$\sqrt{3}$y=0C.x±$\sqrt{2}$y=0D.$\sqrt{3}$x±y=0

查看答案和解析>>

同步练习册答案