【题目】已知椭圆
过点
,且椭圆
的一个顶点
的坐标为
.过椭圆
的右焦点
的直线
与椭圆
交于不同的两点
,
(
,
不同于点
),直线
与直线
:
交于点
.连接
,过点
作
的垂线与直线
交于点
.
(1)求椭圆
的方程,并求点
的坐标;
(2)求证:
,
,
三点共线.
【答案】(1)
,
;(2)证明见解析.
【解析】
(1)根据题意列方程组
,即可得到椭圆的方程,进而得到焦点坐标;
(2)讨论直线
的斜率,利用
是平行的证明
,
,
三点共线.
(1) 因为点
在椭圆
上,且椭圆
的一个顶点
的坐标为
,
所以
解得![]()
所以椭圆
的方程为
.
所以椭圆
的右焦点
的坐标为
.
(2)① 当直线
的斜率不存在时,直线
的方程为
.
显然,
,
或
,
.
当
,
时,直线
的方程为
,点
的坐标为
.
所以
.
直线
的方程为
,点
的坐标为
.
则
,
.
所以
,所以
,
,
三点共线.
同理,当
,
时,
,
,
三点共线.
② 当直线
的斜率存在时,设直线
的方程为
.
由
得
.
且
.
设
,
,则
,
.
直线
的方程为
,点
的坐标为
.
所以
.
直线
的方程为
,点
的坐标为
.
则
,
.
所以![]()
,
,
,
,
,
.
所以
与
共线,
所以
,
,
三点共线.
综上所述,
,
,
三点共线.
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,直线
的极坐标方程为
.
(1)求
的普通方程和
的直角坐标方程;
(2)直线
与
轴的交点为
,经过点
的直线
与曲线
交于
两点,若
,求直线
的倾斜角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:对于任意
,满足条件
且
(M是与n无关的常数)的无穷数列
称为M数列.
(1)若等差数列
的前
项和为
,且
,判断数列
是否是M数列,并说明理由;
(2)若各项为正数的等比数列
的前
项和为
,且
,证明:数列
是M数列,并指出M的取值范围;
(3)设数列
,问数列
是否是M数列?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:{an}是公比大于1的等比数列,Sn为其前n项和,S3=7,且a1+3,3a2,a3+4构成等差数列.
(1)求数列{an}的通项公式;
(2)令bn=log2a3n+1,求数列{bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)求
在区间
上的最大值和最小值;
(2)在曲线
上是否存在点P,使得过点P可作三条直线与曲线
相切?若存在,求出其横坐标的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知
平面
,四边形
为正方形,
,
,若鳖臑
的外接球的体积为
,则阳马
的外接球的表面积等于______.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某校运动会男生组田径综合赛以选手三项运动的综合积分高低决定排名.具体积分规则如表1所示,某代表队四名男生的模拟成绩如表2.
表1 田径综合赛项目及积分规则
项目 | 积分规则 |
| 以 |
跳高 | 以 |
掷实心球 | 以 |
表2 某队模拟成绩明细
姓名 | 100米跑(秒) | 跳高(米) | 掷实心球(米) |
甲 |
|
|
|
乙 |
|
|
|
丙 |
|
|
|
丁 |
|
|
|
根据模拟成绩,该代表队应选派参赛的队员是:( )
A.甲B.乙C.丙D.丁
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com