精英家教网 > 高中数学 > 题目详情
10.已知α是第三象限角,且$sin({α-\frac{7}{2}π})=-\frac{1}{5}$,则$\frac{{sin({π-α})cos({2π-α})tan({-α+\frac{3}{2}π})}}{{cot({-α-3π})sin({-\frac{π}{2}-α})}}$=$-\frac{2\sqrt{6}}{5}$.

分析 利用诱导公式求得cosα的值,进而根据同角三角函数的基本关系求得sinα,再利用三角函数的诱导公式化简$\frac{{sin({π-α})cos({2π-α})tan({-α+\frac{3}{2}π})}}{{cot({-α-3π})sin({-\frac{π}{2}-α})}}$,代入sinα的值即可得答案.

解答 解:∵$sin({α-\frac{7}{2}π})=-\frac{1}{5}$,
∴$cosα=-\frac{1}{5}$.
∵a是第三象限角,
∴$sinα=-\sqrt{1-co{s}^{2}α}=-\frac{2\sqrt{6}}{5}$.
则$\frac{{sin({π-α})cos({2π-α})tan({-α+\frac{3}{2}π})}}{{cot({-α-3π})sin({-\frac{π}{2}-α})}}$=$\frac{sinα•cosα•cotα}{(-cotα)•(-cosα)}$=sinα=$-\frac{2\sqrt{6}}{5}$.
故答案为:$-\frac{2\sqrt{6}}{5}$.

点评 本题主要考查了三角函数的化简求值,同角三角函数的基本关系和诱导公式的应用,利用诱导公式的时候要特别留意三角函数值的正负,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知a∈R,命题p:“?x∈[1,2],x2-a≥0”,命题q:“?x∈R,x2+2ax+2-a=0”若命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=3cscx•cosx的最小正周期是π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.我们把平面直角坐标系中,函数y=f(x),x∈D上的点P(x,y),满足x∈N*,y∈N*的点称为函数y=f(x)的“正格点”.
(1)请你选取一个m的值,使对函数f(x)=sinmx,x∈R的图象上有正格点,并写出函数的一个正格点坐标.
(2)若函数f(x)=sinmx,x∈R,m∈(1,2)与函数g(x)=lgx的图象有正格点交点,求m的值,并写出两个函数图象的所有交点个数.
(3)对于(2)中的m值,函数f(x)=sinmx,$x∈({0\;,\;\;\frac{5}{9}})$时,不等式logax>sinmx恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=cos4x+2sinxcosx-sin4x
(1)求函数f(x)奇偶性、最小正周期和单调递增区间
(2)当$x∈[{0\;,\;\;\frac{π}{2}}]$时,求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知θ是第四象限角,且$sinθ+cosθ=\frac{1}{5}$,求值:
(1)sinθ-cosθ;
(2)tanθ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆O:x2+y2=4和点M(1,a).
(Ⅰ)若过点M有且只有一条直线与圆O相切,求实数a的值,并求出切线方程.
(Ⅱ)a=$\sqrt{2}$,过点M作圆O的两条弦AC,BD互相垂直,求|AC|+|BD|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=1+log2x在x∈[4,+∞)上的值域是(  )
A.[2,+∞)B.(3,+∞)C.[3,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数$y=\frac{x}{{\sqrt{(x+2)(x-2)}}}$的定义域是(-∞,-2)∪(2,+∞).

查看答案和解析>>

同步练习册答案