精英家教网 > 高中数学 > 题目详情
19.函数f(x)=1+log2x在x∈[4,+∞)上的值域是(  )
A.[2,+∞)B.(3,+∞)C.[3,+∞)D.(-∞,+∞)

分析 结合对数函数的性质,从而求出函数的值域.

解答 解:∵f(x)=1+≥1+log2x≥1+log24=3,
∴函数f(x)的值域是[3,+∞),
故选:C.

点评 本题考查了函数的值域问题,考查了对数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若角α的顶点在坐标原点,始边与x轴的正半轴重合,终边与射线3x+4y=0(x≤0)重合,则$cos({2α+\frac{π}{6}})$=$\frac{7\sqrt{3}+24}{50}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知α是第三象限角,且$sin({α-\frac{7}{2}π})=-\frac{1}{5}$,则$\frac{{sin({π-α})cos({2π-α})tan({-α+\frac{3}{2}π})}}{{cot({-α-3π})sin({-\frac{π}{2}-α})}}$=$-\frac{2\sqrt{6}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若集合为$\left\{{1,a,\frac{b}{a}}\right\}=\left\{{0,{a^2},a+b}\right\}$时,则a-b=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)={log_a}\frac{x-2}{x+2}$的定义域为[m,n],值域为[logaa(n-1),logaa(m-1)],且f(x)在[m,n]上为减函数.(常数a>0,且a≠1)
(1)求证m>2
(2)求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax2+bx-2的两个零点分别是1和-2.
(1)求f(x)的解析式;
(2)求f(x)在区间[-1,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x),g(x)均为奇数,且F(x)=af(x)+bg(x)+2在(-∞,0)上的最小值是-1,则函数F(x)在(0,+∞)上的最大值是(  )
A.6B.5C.3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.圆(x+2)2+y2=5的圆心为(  )
A.(2,0)B.(0,2)C.(-2,0)D.(0,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$E:\frac{x^2}{5}+\frac{y^2}{4}=1$的右焦点为F,设直线l:x=5与x轴的交点为E,过点F且斜率为k的直线l1与椭圆交于A,B两点,M为线段EF的中点.
(I)若直线l1的倾斜角为$\frac{π}{4}$,求△ABM的面积S的值;
(Ⅱ)过点B作直线BN⊥l于点N,证明:A,M,N三点共线.

查看答案和解析>>

同步练习册答案