精英家教网 > 高中数学 > 题目详情
20.函数$y=\frac{x}{{\sqrt{(x+2)(x-2)}}}$的定义域是(-∞,-2)∪(2,+∞).

分析 根据二次根式的性质得到关于x的不等式,解出即可.

解答 解:由题意得:(x+2)(x-2)>0,
解得:x>2或x<-2,
故函数的定义域是(-∞,-2)∪(2,+∞),
故答案为:(-∞,-2)∪(2,+∞).

点评 本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知α是第三象限角,且$sin({α-\frac{7}{2}π})=-\frac{1}{5}$,则$\frac{{sin({π-α})cos({2π-α})tan({-α+\frac{3}{2}π})}}{{cot({-α-3π})sin({-\frac{π}{2}-α})}}$=$-\frac{2\sqrt{6}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x),g(x)均为奇数,且F(x)=af(x)+bg(x)+2在(-∞,0)上的最小值是-1,则函数F(x)在(0,+∞)上的最大值是(  )
A.6B.5C.3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.圆(x+2)2+y2=5的圆心为(  )
A.(2,0)B.(0,2)C.(-2,0)D.(0,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.对于a>0,a≠1,下列结论中
(1)am+an=am+n
(2)${({a^m})^n}={a^{m^n}}$
(3)若M=N,则logaM=logaN
(4)若${log_a}{M^2}={log_a}{N^2}$,
则M=N正确的结论有(  )
A.3个B.2个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在Rt△ABC中,三边长分别为a,b,c,则c2=a2+b2,则在同一顶点引出的三条两两垂直的三棱锥V-ABC中,则有${S^2}_{△ABC}={S^2}_{△VAB}+{S^2}_{△VBC}+{S^2}_{△VAC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可推出空间下列结论,则其中正确的结论的个数有(  )
①垂直于同一条直线的两条直线互相平行
②垂直于同一个平面的两条直线互相平行
③垂直于同一条直线的两个平面互相平行
④垂直于同一个平面的两个平面互相平行.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$E:\frac{x^2}{5}+\frac{y^2}{4}=1$的右焦点为F,设直线l:x=5与x轴的交点为E,过点F且斜率为k的直线l1与椭圆交于A,B两点,M为线段EF的中点.
(I)若直线l1的倾斜角为$\frac{π}{4}$,求△ABM的面积S的值;
(Ⅱ)过点B作直线BN⊥l于点N,证明:A,M,N三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示,在△ABC中,AD⊥BC于D,下列条件:
(1)∠B+∠DAC=90°;
(2)∠B=∠DAC;
(3)$\frac{CD}{AD}$=$\frac{AC}{AB}$;
(4)AB2=BD•BC.
其中一定能够判定△ABC是直角三角形的共有(  )
A.3个B.2个C.1个D.0个

查看答案和解析>>

同步练习册答案