精英家教网 > 高中数学 > 题目详情

以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X表示.

(1)如果X=8,求乙组同学植树棵数的平均数和方差;

(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.


 (2)记甲组四名同学为A1,A2,A3,A4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B1,B2,B3,B4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:

(A1,B1),(A1,B2),(A1,B3),(A1,B4),

(A2,B1),(A2,B2),(A2,B3),(A2,B4),

(A3,B1),(A3,B2),(A3,B3),(A3,B4),

(A4,B1),(A4,B2),(A4,B3),(A4,B4),

用C表示:“选出的两名同学的植树总棵数为19”这一事件,则C中的结果有4个,它们是:(A1,B4),(A2,B4),(A3,B2),(A4,B2),

故所求概率为P(C)=.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


如图,直四棱柱ABCD—A1B1C1D1的底面ABCD为平行四边形,其中AB=,BD=BC=1,AA1=2,E为DC中点,点F在DD1上,且DF=

(1)求异面直线BD与A1D1的距离;

(2)EF与BC1是否垂直?请说明理由;

(3)求二面角E—FB—D的正切值。

查看答案和解析>>

科目:高中数学 来源: 题型:


四棱锥P=ABCD中,AB⊥CD,CD⊥AD,PA⊥底面ABCD,PA=AD=CD=2AB=2,M为PC的中点。

(1)求证BM∥平面PAD; 

(2)在△PAD内找一点N,使MN⊥平面PBD;

(3)求直线PC与平面PBD所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:


从某社区家庭中按分层抽样的方法,抽取100户高、中、低收入家庭调查社会购买力的某项指标,若抽出的家庭中有56户中等收入户和19户低收入户,已知该社区高收入家庭有125户,则该社区家庭总户数为__________

查看答案和解析>>

科目:高中数学 来源: 题型:


某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为________.

查看答案和解析>>

科目:高中数学 来源: 题型:


在区间[0,10]内任取两个数,则这两个数的平方和也在[0,10]的概率为            .

查看答案和解析>>

科目:高中数学 来源: 题型:


运行右图所示框图的相应程序,若输入的值分别为,则输出的值是(    )

A.0      B.1     C. 2      D. -1

查看答案和解析>>

科目:高中数学 来源: 题型:


设函数

(Ⅰ)求函数的单调递增区间;

(Ⅱ)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知命题方程上有解;命题只有一个实数满足不等式,若命题“”是假命题,求的取值范围.

查看答案和解析>>

同步练习册答案