精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\frac{1}{3}$x3-2ax2+3a2x-2.
(1)若的单调递减区间为(-3,-1),求a的值;
(2)若f(x)在(0,2a)上有两个零点,求a3的取值范围.

分析 (1)先求导,再根据函数的单调区间,即可求出a的值;
(2)根据函数的零点判定定理,即可求出a的值范围.

解答 解:(1)∵f(x)=$\frac{1}{3}$x3-2ax2+3a2x-2,
∴f′(x)=x2-4ax+3a2=(x-3a)(x-a),
∵函数f(x)的单调递减区间为(-3,-1),
∴$\left\{\begin{array}{l}{3a=-3}\\{a=-1}\end{array}\right.$,
即a=-1;
(2)∵f(x)在(0,2a)上有两个零点,
∴a>0,且$\left\{\begin{array}{l}{f(a)>0}\\{f(2a)<0}\end{array}\right.$,
解得$\frac{3}{2}<{a}^{3}<3$
故a3的取值范围为($\frac{3}{2}$,3)

点评 本题考查了应用导数研究函数的单调性、零点以及函数在闭区间上的最值问题,同时考查分析问题、解决问题的能力以及分类讨论的数学思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知Sn为数列{an}的前n项和,Sn=nan-3n(n-1),(n∈N*),且a2=11.
(1)求a1的值;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在等腰△ABC中,∠BAC=90°,AB=AC=2,$\overrightarrow{BC}=2\overrightarrow{BD}$,$\overrightarrow{AC}=3\overrightarrow{AE}$,则$\overrightarrow{AD}•\overrightarrow{BE}$的值为(  )
A.$-\frac{4}{3}$B.$-\frac{1}{3}$C.$\frac{1}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知U=R,A={x|x2≤1},B={x|y=lnx},则∁U(A∪B)=(  )
A.(-∞,0)(1,+∞)B.(-∞,0)(1,+∞)C.(-∞,-1)D.(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示的程序框图的输出结果是(  )
A.2B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若cos2(α+$\frac{π}{4}$)=$\frac{1}{6}$,则sin2α=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点为抛物线y2=8x的焦点,椭圆的离心率为$\frac{\sqrt{3}}{2}$,直线l过点E(-1,0)且与椭圆C交于M,N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)△MON的面积是否存在最大值,若存在,求出△MON面积的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,满足a1=2,Sn+2=2an,n∈N+
(Ⅰ)求an
(Ⅱ)求证$\frac{{a}_{1}}{({a}_{1}+1)({a}_{2}+1)}+\frac{{a}_{2}}{({a}_{2}+1)({a}_{3}+1)}$+…+$\frac{{a}_{n}}{({a}_{n}+1)({a}_{n+1}+1)}<\frac{1}{3}$
(Ⅲ)设b1,b2,…,b2015是数列a1,a2,…,a2015的任意一个排列,求(${a}_{1}+\frac{1}{{b}_{1}}$)$({a}_{2}+\frac{1}{{b}_{2}})…({a}_{2015}+\frac{1}{{b}_{2015}})$的最大值,并说明何时取到等号.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若锐角三角形ABC的面积是$\frac{3}{2}\sqrt{3}$,AB=2,AC=3,则BC=$\sqrt{7}$.

查看答案和解析>>

同步练习册答案