精英家教网 > 高中数学 > 题目详情
计算:
1+sinx+cosx+2sinxcosx
1+sinx+cosx
考点:三角函数的化简求值
专题:计算题,三角函数的求值
分析:运用同角的平方关系:1=sin2x+cos2x,分解因式,再由两角和的正弦公式,即可化简.
解答: 解:原式=
sin2x+cos2x+2sinxcosx+sinx+cosx
1+sinx+cosx

=
(sinx+cosx)2+(sinx+cosx)
1+sinx+cosx
=
(sinx+cosx)(sinx+cosx+1)
1+sinx+cosx

=sinx+cosx=
2
2
2
sinx+
2
2
cosx

=
2
sin(x+
π
4
).
点评:本题考查同角的平方关系和两角和的正弦公式,考查化简整理的运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆中心在坐标原点,焦点在x轴上,短轴长小于焦距长.以其两个焦点和短轴的两个端点为顶点的
四边形是一个内角为120°且面积为2
3
的菱形,设P为该椭圆上的动点,C、D的坐标分别是(-
3
,0),
3
,0),则PC•PD的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)且lg(lgy)=lgx+lg(4-x).
(1)求f(x)的定义域及解析式;
(2)求f(x)的值域;
(3)证明:lg(lgy)=lg(lgf(x)).

查看答案和解析>>

科目:高中数学 来源: 题型:

设M=
102012+1
102013+1
,N=
102013+1
102014+1
,P=
102012+9
102013+100
,Q
102013+9
102014+100
,则M与N、P与Q的大小关系为(  )
A、M>N,P<Q
B、M>N,P<Q
C、M>N,P<Q
D、M>N,P<Q

查看答案和解析>>

科目:高中数学 来源: 题型:

若角θ的终边与
7
角的终边相同,求在[0,2π)内终边与
θ
3
角的终边相同的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法错误的是(  )
A、在统计里,把所需考察对象的全体叫作总体
B、平均数、众数与中位数从不同的角度描述了一组数据的集中趋势
C、一组数据的平均数一定大于这组数据中的每个数据
D、一组数据的方差越大,说明这组数据的波动越大

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在正方体ABCD-A1B1C1D1中,E为D1C1的中点,N为BC的中点.
(1)求证EN⊥A1C1
(2)求异面直线A1C1与ED所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f[f(x)]=xf(x)+1,则方程f(x)=0的实根个数为(  )
A、0B、1C、2D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方形ABCD的边长是13,平面ABCD外一点P到正方形各顶点的距离都为13,M、N分别是PA、BD上的点且PM:MA=BN:ND=5:8,如图.
(1)求证:直线MN∥平面PBC;
(2)求线段MN的长.

查看答案和解析>>

同步练习册答案