精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)若函数无零点,求实数的取值范围;
(Ⅱ)若函数有且仅有一个零点,求实数的取值范围.

(Ⅰ) ;(Ⅱ)

解析试题分析:(Ⅰ) 函数无零点,即=0,也就是无解,无解或x=0,1是其根。
所以 ,或m-2=0,或-1+1+m-2=0,
 ;             ……6分
(Ⅱ) 函数有且仅有一个零点,所以,或有一根为2,另一根在(-2,2)解得, …… 12分
考点:本题主要考查函数零点的概念及其求法,一元二次方程根的讨论。
点评:易错题,解答本题关键 是利用转化与化归思想,将分式函数的零点问题转化成为一元二次方程根的讨论问题。其中(II)小题,易忽视有一根为2,另一根在(-2,2)的情况而出错。考虑问题要全面。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数的一个极值点.
(1)求的单调递增区间;
(2)若当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中.
(Ⅰ)当时,求不等式的解集;
(Ⅱ)若不等式的解集为 ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

理科已知函数,当时,函数取得极大值.
(Ⅰ)求实数的值;(Ⅱ)已知结论:若函数在区间内导数都存在,且,则存在,使得.试用这个结论证明:若,函数,则对任意,都有;(Ⅲ)已知正数满足求证:当时,对任意大于,且互不相等的实数,都有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求的最小值;
(2)若函数在区间上为单调函数,求实数的取值范围;
(3)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若对任意的实数a,函数的图象在x = x0处的切线斜率总想等,求x0的值;
(2)若a > 0,对任意x > 0不等式恒成立,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
(1)若函数处取得极大值,求的值;
(2)时,函数图象上的点都在所表示的区域内,求的取值范围;
(3)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

动点P从边长为1的正方形ABCD的顶点A出发顺次经过B、C、D,再回到A,设表示P点行程,表PA的长,求关于的函数关系式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知x=的一个极值点
(Ⅰ)求的值;
(Ⅱ)求函数的单调增区间;
(Ⅲ)设,试问过点(2,5)可作多少条曲线y=g(x)的切线?为什么?

查看答案和解析>>

同步练习册答案