分析 (1)欲证BC⊥平面PAC,根据直线与平面垂直的判定定理可知只需证BC与平面PAC内两相交直线垂直,根据线面垂直的性质可知PA⊥BC,而AC⊥BC,满足定理所需条件;
(2)根据DE⊥平面PAC,垂足为点E,则∠DAE是AD与平面PAC所成的角.在Rt△ADE中,求出AD与平面PAC所成角即可;
解答 证明:(1)∵PA⊥底面ABC,
∴PA⊥BC.
又∠BCA=90°,
∴AC⊥BC,
∴BC⊥平面PAC.
∵BC?平面PBC,
∴平面PBC⊥平面PAC
(2)取PC的中点E,
连结AE,DE,
∵D为PB的中点,
DE∥BC,
∴DE=$\frac{1}{2}$BC.
又由(1)知,BC⊥平面PAC,
∴DE⊥平面PAC,垂足为点E,
∴∠DAE是AD与平面PAC所成的角.
∵PA⊥底面ABC,∴PA⊥AB.
又PA=AB,∴△ABP为等腰直角三角形,![]()
∴AD=$\frac{1}{\sqrt{2}}$AB.
在Rt△ABC中,∠ABC=60°,
∴BC=$\frac{1}{2}$AB,
∴在Rt△ADE中,sin∠DAE=$\frac{DE}{AD}=\frac{BC}{2AD}=\frac{\sqrt{2}}{4}$,
即AD与平面PAC所成角的正弦值为$\frac{\sqrt{2}}{4}$.
点评 本题考查线面所成角、线面垂直的判定定理,涉及到的知识点比较多,知识性技巧性都很强,要求熟练掌握相应的判定定理.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{π}{6}$] | B. | [$\frac{π}{3}$,$\frac{2π}{3}$] | C. | (0,$\frac{π}{3}$] | D. | [$\frac{2π}{3}$,π) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com