精英家教网 > 高中数学 > 题目详情
5.某种产品的广告支出x与销售额y(单位:万元)之间有如下对应数据:
x24568
y3040605070
根据上表可得回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中的$\widehat{b}$为6.5.若要使销售额不低于100万元,则至少需要投入广告费为(x为整数)(  )
A.10万元B.11万元C.12万元D.13万元

分析 求得样本中心点($\overline{x}$,$\overline{y}$),代入线性回归方程,求得线性回归方程,要使销售额不低于100万元,即y≥100,代入即可取得x的值.

解答 解:$\overline{x}$=$\frac{2+4+5+6+8}{5}$=5,$\overline{y}$=$\frac{30+40+60+50+70}{5}$=50,
由线性回归方程:$\widehat{y}$=6.5x+$\widehat{a}$,则$\widehat{a}$=$\overline{y}$-6.5$\overline{x}$=17.5,
∴线性回归方程:$\widehat{y}$=6.5x+17.5,
要使销售额不低于100万元,则y≥100,即6.5x+17.5≥100,
解得:x≥12.69,
至少需要投入广告费为(x为整数)13万元,
故选:D.

点评 本题考查线性回归方程的应用,考查线性回归方程的求法,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知△ABC的三个顶点A(1,3),B(3,1),C(-1,0),则△ABC 的面积为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=$\sqrt{7}$,PA=$\sqrt{3}$,∠ABC=120°,G为线段PC上的点.
(Ⅰ)证明:BD⊥面PAC
(Ⅱ)若G是PC的中点,求DG与APC所成的角的正弦值;
(Ⅲ)若G满足PC⊥面BGD,求二面角G-BD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)用分析法证明:$\sqrt{6}-\sqrt{5}>2\sqrt{2}-\sqrt{7}$
(2)已知函数f(x)对其定义域的任意两个实数a,b.当a<b时,都有f(a)<f(b).用反证法证明f(x)=0至多有一个实根.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线l:x-y-5=0的纵截距是(  )
A.5B.1C.-5D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知Sn是等差数列{an}的前n项和,且a2=2,S6=21
(1)求数列{an}的通项公式;
(2)令${b_n}=\frac{1}{{(n+1){a_n}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1}{{{x^2}-1}}$.
(1)求f(x)的定义域;
(2)判断函数f(x)在(1,+∞)上的单调性,并用单调性的定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,一个平面图形的斜二测画法的直观图是一个边长为$\sqrt{2}a$的正方形,则原平面图形的面积为(  )
A.$\frac{{\sqrt{2}}}{4}{a^2}$B.$\sqrt{2}{a^2}$C.$2\sqrt{2}{a^2}$D.$4\sqrt{2}{a^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某媒体对“男女同龄退休”这一公众关注的问题进行了民意调查,表是在某单位得到的数据(人数).
赞成反对合计
5611
11314
合计16925
(I )能否有90%以上的把握认为对这一问题的看法与性别有关?
(II)从反对“男女同龄退休”的甲、乙等6名男士中选出2人进行陈述,求甲、乙至少有一人被选出的概率.
附:
P(K2≥k)0.250.150.10
k1.3232.0722.706
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步练习册答案