精英家教网 > 高中数学 > 题目详情

已知函数.
(Ⅰ)若曲线处的切线互相平行,求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意,均存在,使得,求的取值范围.

(Ⅰ); 
(Ⅱ) ①当时, 的单调递增区间是,单调递减区间是.
②当时, 的单调递增区间是,单调递减区间是.
③当时,的单调递增区间是
④当时, 的单调递增区间是,单调递减区间是.
(Ⅲ)

解析试题分析:.(Ⅰ),解得.  2分                             
(Ⅱ).
①当时,
在区间上,;在区间
的单调递增区间是,单调递减区间是.      3分
②当时,
在区间上,;在区间
的单调递增区间是,单调递减区间是.  4分
③当时,, 故的单调递增区间是.  5分
④当时,
在区间上,;在区间
的单调递增区间是,单调递减区间是.   6分
(Ⅲ)由已知,在上有.        8分              
由已知,,                   9分
由(Ⅱ)可知,
①当时,上单调递增,

所以,,解得,故.     11分
②当时,上单调递增,在上单调递减,
.
可知
所以,, 综上所述,.       14分
考点:导数的几何意义;利用导数研究函数的单调性;利用导数研究函数的最值。
点评:当含有参数时,我们也可以通过解不等式来得到单调递增(或单调递减)区间,这样问题就转化为解含参不等式。解含参不等式主要应用的数学思想是分类讨论,常讨论的有:开口方向,两个的大小,和判别式∆,讨论时要不重不漏。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(12分)(某商品进货单价为元,若销售价为元,可卖出个,如果销售单价每涨元,销售量就减少个,为了获得最大利润,则此商品的最佳售价应为多少?)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)它是奇函数还是偶函数?并给出证明.
(2)它的图象具有怎样的对称性?
(3)它在上是增函数还是减函数?并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 (为常数)是实数集R上的奇函数,函数是区间[-1,1]上的减函数
(I)求的值;
(II)求的取值范围;
(III)若上恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的图象过点,且函数的图象关于轴对称;
(1)求的值及函数的单调区间;
(2)求函数极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,设函数的图象关于直线=π对称,其中为常数,且
(Ⅰ)求函数的最小正周期;
(Ⅱ)若的图象经过点,求函数在区间上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数f (x)=-ax3x2+(a-1)x (x>0),(aÎR).
(Ⅰ)当0<a时,讨论f (x)的单调性;
(Ⅱ)若f (x)在区间(a, a+1)上不具有单调性,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知函数
(Ⅰ)设(其中的导函数),求的最大值;
(Ⅱ)求证: 当时,有
(Ⅲ)设,当时,不等式恒成立,求的最大值.

查看答案和解析>>

同步练习册答案