精英家教网 > 高中数学 > 题目详情
18.在△ABC中,角A,B,C的对边分别为a,b,c,若A,B,C成等差数列,且△ABC的面积为$\sqrt{3}$,则ac等于(  )
A.4B.2C.$\sqrt{3}$D.1

分析 由A,B,C成等差数列得出B=60°,代入三角形的面积公式即可得出ac的值.

解答 解:∵A,B,C成等差数列,∴A+C=2B,
又A+B+C=180°,∴3B=180°,B=60°.
∵S△ABC=$\frac{1}{2}acsinB$=$\frac{\sqrt{3}}{4}ac$=$\sqrt{3}$,
∴ac=4.
故选:A.

点评 本题考查了等差数列的性质,三角形的面积公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|2x≤4,x∈R},B={x|$\sqrt{x}$≤2,x∈Z},则A∩B=(  )
A.(0,2)B.[0,2]C.{0,1,2}D.{0,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)=1n(x2-2x-3)的单调增区间记为集合A,关于原点对称的区间[a-5,a2-5a]记为集合B,求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知U={x|x是三角形},A={x|x是等边三角形},求∁UA.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义在R上的函数y=f(x-1)是偶函数,且x≤-1时,y=f(x)是减函数,则满足不等式f(2x-1)>f(2)的x的解集为(  )
A.(-∞,-$\frac{3}{2}$)∪($\frac{3}{2}$,+∞)B.(-∞,0)∪($\frac{3}{2}$,+∞)C.(-∞,0)∪(1,+∞)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知直线x-my-1-m=0与圆x2+y2=1相切,则实数m的值为(  )
A.l或0B.0C.-1或0D.l或-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设正实数x,y,z满足x2-3xy+4y2-z=0,则当$\frac{xy}{z}$取得最大值时,$\frac{2}{x}+\frac{1}{y}-\frac{2}{z}+2$的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,菱形ABCD中,∠ABC=60°,AC与BD相交于点O,AE⊥平面ABCD,CF∥AE,AB=AE=2.
(Ⅰ)求证:BD⊥平面ACFE;
(Ⅱ)当直线FO与平面BED所成角的大小为45°时,求CF的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若存在α,β∈R,使得$\left\{{\begin{array}{l}{t={{cos}^3}β+\frac{α}{2}cosβ}\\{α≤t≤α-5cosβ}\end{array}}\right.$,则实数t的取值范围是[$-\frac{2}{3}$,1].

查看答案和解析>>

同步练习册答案