精英家教网 > 高中数学 > 题目详情
10.“十一黄金周”期间某市再次迎来了客流高峰,小李从该市的A地到B地有L1、L2两条路线(如图),L1路线上有A1、A2、A3三个路口,各路口遇到堵塞的概率均为$\frac{2}{3}$;L2路线上有B1、B2两个路口,各路口遇到堵塞的概率依次为$\frac{3}{4}$、$\frac{3}{5}$.
(1)若走L1路线,求最多遇到1次堵塞的概率;
(2)若走L2路线,路上遇到的堵塞次数为X,求随机变量X的分布列与数学期望.

分析 (1)设走l1路线最多遇到1次堵塞为A事件,利用n次独立重复试验中事件A恰好发生k次的概率计算公式能求出走L1路线,最多遇到1次堵塞的概率.
(2)依题意X的可能取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.

解答 解:(1)设走l1路线最多遇到1次堵塞为A事件,
则P(A)=${C}_{3}^{0}(\frac{1}{3})^{3}$+${C}_{3}^{1}×\frac{2}{3}×(\frac{1}{3})^{2}$=$\frac{7}{27}$,
∴走L1路线,最多遇到1次堵塞的概率为$\frac{7}{27}$.
(2)依题意X的可能取值为0,1,2,
P(X=0)=$(1-\frac{3}{4})(1-\frac{3}{5})$=$\frac{1}{10}$,
P(X=1)=$\frac{3}{4}×(1-\frac{3}{5})+(1-\frac{3}{4})×\frac{3}{5}$=$\frac{9}{20}$,
P(X=2)=$\frac{3}{4}×\frac{3}{5}$=$\frac{9}{20}$,
∴随机变量X的分布列为:

 X 0 1 2
 P $\frac{1}{10}$ $\frac{9}{20}$ $\frac{9}{20}$
∴E(X)=$\frac{1}{10}×0+\frac{9}{20}×1+\frac{9}{20}×2$=$\frac{27}{20}$.

点评 本题考查概率的求法,考查离散型随机变量分布列、数学期望的求法,是中档题,解题时要认真审题,注意n次独立重复试验中事件A恰好发生k次的概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.曲线y=$\frac{1}{2}$x2-2x在点(1,-$\frac{3}{2}$)处切线的倾斜角为$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知不等式|x+2|+|x-2丨<10的解集为A.
(1)求集合A;
(2)若?a,b∈A,x∈R+,不等式a+b>(x-4)($\frac{1}{x}$-9)+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.袋中有形状、大小都相同的5只球,其中1只白球,2只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=lgx-$\frac{9}{x}$的零点所在的区间是(  )
A.(10,100)B.($\sqrt{10}$,10)C.(1,$\sqrt{10}$)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若f(x)=$\left\{\begin{array}{l}{lgx,}&{x>0}\\{x+{∫}_{0}^{a}3{t}^{2}dt,}&{x≤0}\end{array}\right.$,f(f(1))=1,则a的值是(  )
A.-1B.-2C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知直线l与直线2x-3y+4=0关于直线x=1对称,则直线l的方程为(  )
A.2x+3y-8=0B.3x-2y+1=0C.x+2y-5=0D.3x+2y-7=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图所示,α∥β,M在α与β同侧,过M作直线a与b,a分别与α、β相交于A、B,b分别与α、β相交于C、D.
(1)判断直线AC与直线BD是否平行;
(2)如果MA=4cm,AB=5cm,MC=3cm,求MD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\frac{{3}^{x}-{3}^{-x}}{2}$,求它的反函数f-1(x).

查看答案和解析>>

同步练习册答案