精英家教网 > 高中数学 > 题目详情
5.函数f(x)=lgx-$\frac{9}{x}$的零点所在的区间是(  )
A.(10,100)B.($\sqrt{10}$,10)C.(1,$\sqrt{10}$)D.(0,1)

分析 先求出f($\sqrt{10}$)f(10)<0,再由二分法进行判断.

解答 解:由于f($\sqrt{10}$)f(10)=($\frac{1}{2}$-$\frac{9\sqrt{10}}{10}$)(1-$\frac{9}{10}$)<0,
根据二分法,得函数在区间($\sqrt{10}$,10]内存在零点.
故选:B.

点评 本题考查函数的零点问题,解题时要注意二分法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知直线l1:3x+4y-2=0与l2:2x+y+2=0的交点为P.
(1)求过点P且平行于直线l3:x-2y-1=0的直线方程;
(2)求过点P且垂直于直线l3:x-2y-1=0的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}{2-{3}^{-x},x≤0}\\{-lo{g}_{2}x,x>0}\end{array}\right.$,则f(f(4))=-7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数g(x)=xlnx,设0<a<b,证明:0<g(a)+g(b)-2g($\frac{a+b}{2}$)<(b-a)ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.棱长为2的正四面体(各面均为正三角形)俯视图如图所示,则它正视图的面积为(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.$\frac{2\sqrt{6}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.“十一黄金周”期间某市再次迎来了客流高峰,小李从该市的A地到B地有L1、L2两条路线(如图),L1路线上有A1、A2、A3三个路口,各路口遇到堵塞的概率均为$\frac{2}{3}$;L2路线上有B1、B2两个路口,各路口遇到堵塞的概率依次为$\frac{3}{4}$、$\frac{3}{5}$.
(1)若走L1路线,求最多遇到1次堵塞的概率;
(2)若走L2路线,路上遇到的堵塞次数为X,求随机变量X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=2a,则角A的取值范围是(0,$\frac{π}{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4,x≤0}\\{x+\frac{1}{x},x>0}\end{array}\right.$,若关于x的方程f(2x+$\frac{1}{2}$)=m有3个不同的解,则m的取值范围是(2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.甲与其四位同事各有一辆私家车,车牌尾数分别是0、0、2、1、5,为遵守当地某月5日至9日5天的限行规定(奇数日车牌尾数为奇数的车通行,偶数日车牌尾数为偶数的车通行),五人商议拼车出行,每天任选一辆符合规定的车,但甲的车最多只能用-天,则不同的用车方案种数为(  )
A.5B.24C.32D.64

查看答案和解析>>

同步练习册答案