精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=$\left\{\begin{array}{l}{2-{3}^{-x},x≤0}\\{-lo{g}_{2}x,x>0}\end{array}\right.$,则f(f(4))=-7.

分析 利用分段函数性质求解.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{2-{3}^{-x},x≤0}\\{-lo{g}_{2}x,x>0}\end{array}\right.$,
∴f(4)=-log24=-2,
∴f(f(4))=f(-2)=2-9=-7.
故答案为:-7.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.某人10万元买了1辆车,每年使用的保险费.养路费和油费共1万元,年维修费第一年0.2万元,以后每年递增0.1万元,则这种汽车使用10$\sqrt{2}$年时,它的年平均费用最少.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C的方程是$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),其右焦点F到椭圆C的其中三个顶点的距离按一定顺序构成以$\sqrt{3}$为公差的等差数列,且该数列的三项之和等于6.
(1)求椭圆C的方程;
(2)若直线AB与椭圆C交于点A,B(A在第一象限),满足2$\overrightarrow{OA}$+$\overrightarrow{OB}$=λ$\overrightarrow{OF}$,当△0AB面积最大时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.F1,F2分别为椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1的左右焦点,P为椭圆上一动点,F2关于直线PF1的对称点为M,F1关于直线PF2的对称点为N,则当|MN|最大时,S${\;}_{△P{F}_{1}{F}_{2}}$为(  )
A.2B.$\sqrt{2}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}为等差数列,a3=5,a4=2a2+a1
(1)求数列{an}的通项公式an
(2)设bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,数列{bn}的前n项和为Tn
(i)求Tn
(ii)若T1,Tm,Tn成等比数列,m>1,求正整数m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知不等式|x+2|+|x-2丨<10的解集为A.
(1)求集合A;
(2)若?a,b∈A,x∈R+,不等式a+b>(x-4)($\frac{1}{x}$-9)+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知实数m>0,函数f(x)=$\frac{2{x}^{2}-sinx+2}{{x}^{2}+1}$在[-m,m]上的最大值为p,最小值为q,则p+q=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=lgx-$\frac{9}{x}$的零点所在的区间是(  )
A.(10,100)B.($\sqrt{10}$,10)C.(1,$\sqrt{10}$)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知F1(-2,0),F2(2,0)直线l:x+y-4=0,点P在直线l上,则过点P以F1,F2为焦点且长轴最短的椭圆标准方程为$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{6}$=1.

查看答案和解析>>

同步练习册答案