| A. | 2 | B. | $\sqrt{2}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}}{3}$ |
分析 由题意画出图形,得到当P,M,N共线时,|MN|最大,由此可知∠F1PF2=60°,然后利用余弦定理求得$|P{F}_{1}||P{F}_{2}|=\frac{8}{3}$.再代入三角形面积公式得答案.
解答
解:由$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1,得a2=4,b2=2,则c2=a2-b2=2,
∴${F}_{1}(-\sqrt{2},0),{F}_{2}(\sqrt{2},0)$,
连接PM,PN,
∵|PM|+|PN|=|PF1|+|PF2|=2a,
∴当P,M,N共线时,|MN|最大,
此时∠MPF1=∠F1PF2,∠F1PF2=∠F2PN,
由∠MPF1+∠F1PF2+F2PN=180°,
得∠F1PF2=60°,
在△F1PF2中,由余弦定理可得:
$4{c}^{2}=|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}-2|P{F}_{1}||P{F}_{2}|cos60°$,
∴$8=(|P{F}_{1}|+|P{F}_{2}|)^{2}-3|P{F}_{1}||P{F}_{2}|$,
即$|P{F}_{1}||P{F}_{2}|=\frac{8}{3}$.
∴S${\;}_{△P{F}_{1}{F}_{2}}$=$\frac{1}{2}×\frac{8}{3}×\frac{\sqrt{3}}{2}=\frac{2\sqrt{3}}{3}$.
故选:C.
点评 本题考查椭圆的简单性质,考查了数形结合的解题思想方法和数学转化思想方法,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com