精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系内,已知点,圆C的方程为,点P为圆上的动点.

求过点A的圆C的切线方程.

的最大值及此时对应的点P的坐标.

【答案】(1);(2)最大值为.

【解析】

分类讨论,利用点到直线的距离等于半径,即可求过点A的圆的切线的方程;

,利用两点间的距离公式表示出,代入所求式子中化简,整理后得出所求式子最大即为最大,而P为圆上的点,连接OC延长与圆的交点即为此时的P点,,求出的最大值,即可确定出所求式子的最大值.

k存在时,设过点A切线的方程为

圆心坐标为,半径

解得

所求的切线方程为

k不存在时方程也满足;

综上所述,所求的直线方程为:

设点,则由两点之间的距离公式知

取得最大值只要使最大即可,

P为圆上的点,

此时直线OC,由

解得舍去

P的坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,且当x≥0时,f(x)=.

(1)求f(x)的解析式;

(2)判断f(x)的单调性;

(3)若对任意的t∈R,不等式f(k-3t2)+f(t2+2t)≤0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】供电部门对某社区1000位居民2017年12月份人均用电情况进行统计后,按人均用电量分为五组,整理得到如下的频率分布直方图,则下列说法错误的是( )

A. 12月份人均用电量人数最多的一组有400人

B. 12月份人均用电量不低于20度的有500人

C. 12月份人均用电量为25度

D. 在这1000位居民中任选1位协助收费,选到的居民用电量在—组的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着互联网的发展,移动支付又称手机支付逐渐深入人民群众的生活某学校兴趣小组为了了解移动支付在人民群众中的熟知度,对岁的人群随机抽样调查,调查的问题是你会使用移动支付吗?其中,回答的共有50个人,把这50个人按照年龄分成5组,并绘制出频率分布表部分数据模糊不清如表:

分组

频数

频率

1

10

2

3

15

4

5

2

合计

50

表中处的数据分别是多少?

从第1组,第3组,第4组中用分层抽样的方法抽取6人,求每组抽取的人数.

抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线C: =1(a>0,b>0)两条渐近线l1 , l2与抛物线y2=﹣4x的准线1围成区域Ω,对于区域Ω(包含边界),对于区域Ω内任意一点(x,y),若 的最大值小于0,则双曲线C的离心率e的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 + =1(a>0,b>0)的离心率为 ,其右焦点到直线2ax+by﹣ =0的距离为
(1)求椭圆C1的方程;
(2)过点P(0,﹣ )的直线l交椭圆C1于A,B两点.
①证明:线段AB的中点G恒在椭圆C2 + =1的内部;
②判断以AB为直径的圆是否恒过定点?若是,求出该定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的离心率是过点的动直线与椭圆相交于两点当直线轴平行时直线被椭圆截得的线段长为.

(Ⅰ)求椭圆的方程

(Ⅱ)在轴上是否存在异于点的定点使得直线变化时总有若存在求出点的坐标若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网格纸的各小格都是边长为1的正方形,图中粗实线画出的是一个几何体的三视图,其中正视图是正三角形,则该几何体的外接球表面积为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD的底面为平行四边形,MPC中点.

(1)求证:BA平面PCD

(2)求证:AP平面MBD

查看答案和解析>>

同步练习册答案