精英家教网 > 高中数学 > 题目详情
10.已知a∈R,函数f(x)=x2+(2a+1)x,g(x)=ax.解关于x的不等式:f(x)≤g(x).

分析 由题意可得x2+(a+1)x≤0,即为x(x+a+1)≤0,讨论a=-1,a>-1,a<-1,结合二次函数的图象,即可得到所求解集.

解答 解:a∈R,函数f(x)=x2+(2a+1)x,g(x)=ax,
f(x)≤g(x),
即为f(x)-g(x)≤0,
即有x2+(a+1)x≤0,
即为x(x+a+1)≤0,
当-a-1=0即a=-1时,x2≤0,解得x=0;
当-a-1>0,即a<-1时,解得0≤x≤-a-1;
当-a-1<0,即a>-1时,解得-a-1≤x≤0.
综上可得,当a=-1时,不等式的解集为{0};
当a>-1时,不等式的解集为[-a-1,0];
当a<-1时,不等式的解集为[0,-a-1].

点评 本题考查二次不等式的解法,注意运用分类讨论的思想方法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知关于x的不等式ax2-3x+2≤0的解集为{x|1≤x≤b}.
(Ⅰ)求实数a,b的值;
(Ⅱ)解关于x的不等式(ax-b)(x-c)>0(c为常数).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,角A,B,C所对的边分别为a,b,c,若$({\sqrt{3}b-c})cosA=acosC$,则$tan({A-\frac{π}{4}})$=$3-2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数y=sin(ωx-2)(ω>0)的最小正周期为$\frac{2π}{3}$,要得到y=sin(ωx-2)的图象,只要将函数y=sinωx的图象(  )
A.向左平移2个单位B.向右平移2个单位
C.向左平移$\frac{2}{3}$个单位D.向右平移$\frac{2}{3}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过点F1(作斜率为k的直线交双曲线右支于点P,且∠F1PF2为锐角,M为线段F1P的中点,过坐标原点O作OT⊥F1P于点T,且|OM|-|TM|=b-a,则k=(  )
A.$\frac{b}{a}$B.$\frac{a}{b}$C.$\frac{a}{\sqrt{{a}^{2}+{b}^{2}}}$D.$\frac{b}{\sqrt{{a}^{2}+{b}^{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知在10件产品中可能存在次品,从中抽取2件检查,其次品数为ξ,已知P(ξ=1)=$\frac{16}{45}$,且该产品的次品率不超过40%,则这10件产品的次品率为(  )
A.10%B.20%C.30%D.40%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知关于x的方程:${log_2}(x+3)-{log_{2^2}}{x^2}=a$在区间(3,4)内有解,则实数a的取值范围是(  )
A.$[{log_2}\frac{7}{4},+∞)$B.$({log_2}\frac{7}{4},+∞)$C.$({log_2}\frac{7}{4},1)$D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.圆C1:x2+y2+2ax+a2-4=0(a≥0)与圆C2:x2+y2-2by+b2-1=0(b≥0)外切,则$\frac{b}{a+6}$最大值为$\frac{1}{2}$..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知定义在区间$[{-\frac{π}{4},\frac{π}{4}}]$上的函数f(x)=2asin2x+b的最大值为1,最小值为-5,则实数a+b的值为-$\frac{1}{2}$或-$\frac{7}{2}$.

查看答案和解析>>

同步练习册答案