精英家教网 > 高中数学 > 题目详情
10.在单位圆中,大小为2弧度的圆心角所对弦的长度为2sin1.

分析 作图,利用正弦函数的定义,找出圆心角,半径,弦之间的关系即可得解.

解答  解:如图,在单位圆O中,圆心角∠AOB=2,由点O向AB引垂线,设垂足为D,
则∠DOB=1,OB=1,BD=$\frac{1}{2}$AB=OBsin∠DOB=sin1,
可得:AB=2sin1.
故答案为:2sin1.

点评 本题考查了圆心角、弦、弧间的关系,考查了数形结合思想的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若x,y满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,则$\frac{y}{x-3}$的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C对应的边分别是a,b,c,已知3cosBcosC+2=3sinBsinC+2cos2A
(1)求角A的大小;
(2)已知$\frac{b}{c}$+$\frac{c}{b}$=4,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知F1,F2为双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足|$\overrightarrow{M{F}_{1}}$|=3|$\overrightarrow{M{F}_{2}}$|,则此双曲线的离心率是(  )
A.$\sqrt{2}$B.$\frac{\sqrt{5}}{2}$C.$\sqrt{5}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知抛物线y2=2px(p>0)的焦点F与双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右焦点重合,点M是抛物线与双曲线的一个交点,若MF⊥x轴,则该双曲线的离心率为$\sqrt{2}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.一条光线沿直线2x-y+2=0照射到y轴后反射,则反射光线所在的直线方程为(  )
A.2x+y-2=0B.2x+y+2=0C.x+2y+2=0D.x+2y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某自来水厂的蓄水池存有400吨水,水厂每小时可向蓄水池中注入60吨,同时蓄水池又向居民小区不间断供水,t小时内供水总量为$120\sqrt{6t}$吨(0≤t≤24)
(1)设t小时后蓄水池中的存水量为y吨,写出y关于t的函数表达式;
(2)求从供水开始到第几小时,蓄水池中的存水量最少?最少水量是多少吨?
(3)若蓄水池中水量少于80吨时,就会出现供水紧张现象,请问:在一天的24小时内,有几小时出现供水紧张现象?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.对定义在区间D上的函数f(x)和g(x),如果对任意x∈D,都有|f(x)-g(x)|≤1成立,那么称函数f(x)在区间D上可被g(x)替代,D称为“替代区间”.给出以下命题:
①f(x)=x2+1在区间(-∞,+∞)上可被g(x)=x2+$\frac{1}{2}$替代;
②f(x)=x可被g(x)=1-$\frac{1}{4x}$替代的一个“替代区间”为[$\frac{1}{4}$,$\frac{3}{2}$]
③f(x)=lnx在区间[1,e]可被g(x)=$\frac{1}{x}$-b替代,则0≤b≤$\frac{1}{e}$
④f(x)=ln(ax2+x)(x∈D1),g(x)=sinx(x∈D2),则存在实数a(≠0),使得f(x)在区间D1∩D2上被g(x)替代.
其中真命题的有①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.知点A,B分别为双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则双曲线E的离心率为(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案