| A. | 0 | B. | -1 | C. | ±1 | D. | 1 |
分析 作出不等式对应的平面区域,利用线性规划的知识,要使目标函数的最优解有无数个,则目标函数和其中一条直线平行,然后根据条件即可求出a的值.
解答
解:作出不等式组对应的平面区域如图:(阴影部分).
若a=0,则y=z,此时满足条件最大值不存;
若a>0,由z=ax+y得y=-ax+z,
若a>0,∴目标函数的斜率k=-a<0.
平移直线y=-ax+z,
由图象可知当直线 y=-ax+z和直线x+y=2平行时,
此时目标函数取得最大值时最优解有无数多个,
此时a=1满足条件;
若a<0,目标函数的斜率k=-a>0.
平移直线y=-ax+z,
由图象可知直线y=-ax+z,此时目标函数取得最大值只有一个,
此时a<0不满足条件.
故选:D
点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 轿车A | 轿车B | 轿车C | |
| 舒适型 | 100 | 150 | z |
| 标准型 | 300 | 450 | 600 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1009 | B. | -2017 | C. | 2017 | D. | -1009 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{2\sqrt{6}}}{3}$ | B. | $\frac{{\sqrt{33}}}{3}$ | C. | $\frac{{4\sqrt{6}}}{3}$ | D. | $\frac{{2\sqrt{33}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{11}{12}$ | B. | $\frac{3}{4}$ | C. | $\frac{5}{6}$ | D. | $\frac{5}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com