精英家教网 > 高中数学 > 题目详情
16.已知0<x<$\frac{3}{4}$,求函数y=5x(1-4x)的最大值.

分析 化简y=5x(1-4x)=$\frac{5}{4}$×4x(1-4x),从而利用基本不等式求函数的最大值.

解答 解:y=5x(1-4x)
=$\frac{5}{4}$×4x(1-4x)
≤$\frac{5}{4}$×$(\frac{4x+1-4x}{2})^{2}$=$\frac{5}{16}$;
(当且仅当4x=1-4x,即x=$\frac{1}{8}$时,等号成立)
故函数y=5x(1-4x)的最大值为$\frac{5}{16}$.

点评 本题考查了基本不等式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.某次知识竞赛规则如下:在主办方预设的固定顺序的5个问题中,选手若能正确回答出三个问题,即停止答题,晋级下一轮;否则不能晋级.假设某选手正确回答每个问题的概率都是$\frac{2}{3}$,且每个问题回答的正确与否都相互独立.
(Ⅰ)求该选手连续答对三道题晋级下一轮的概率;
(Ⅱ)记该选手在本轮中答对问题的个数为随机变量X,求随机变量X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}的前n项和Sn=n2,则a32-a22的值为(  )
A.9B.16C.21D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,平面ABCD⊥平面PAB,且四边形ABCD为正方形,△PAB为正三角形,M为PD的中点,E为线段BC上的动点.
(1)若E为BC的中点,求证:AM⊥平面PDE;
(2)若三棱锥A-PEM的体积为$\frac{{\sqrt{3}}}{3}$,求正方形ABCD的边长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦点分别为${F_1}(-\sqrt{3},0)$、${F_2}(\sqrt{3},0)$,P为椭圆C上任一点,$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值为1.
(1)求椭圆C的方程;
(2)已知点A(1,0),试探究是否存在直线l:y=kx+m与椭圆C交于D、E两点,且使得|AD|=|AE|?若存在,求出k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若数列{an}对任意的正整数n都有an+λ2=an×an+2λ成立,则称数列{an}为“λ阶梯等比数列”,$\frac{{a}_{n+λ}}{{a}_{n}}$的值称为“阶梯比”,若数列{an}是3阶等比数列且a1=1,a4=2,则a2014=2671

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知三棱锥S-ABC的侧棱和底面边长均为a,SO⊥底面ABC,垂足为O,则SO=$\frac{\sqrt{6}}{3}$a(用a表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点A(-6,0)和圆x2+y2=36,AB是该圆的直径,M,N是AB的三等分点,设点P(异于A,B)是该圆上的动点,PD⊥AB于D,且$\overrightarrow{PE}=λ\overrightarrow{ED}$(λ>0),直线PA与BE交于C.
(1)当|CM|+|CN|为定值时,求λ的值;
(2)在(1)的条件下,过点N的直线l与圆x2+y2=36交于G、H两点,l与点C的轨迹交于P,Q两点,且|GH|∈[8$\sqrt{2}$,2$\sqrt{34}$],求椭圆的弦RQ长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知a=${3^{\sqrt{2}}}$,b=${2^{\sqrt{3}}}$,c=${π^{\sqrt{3}}}$,执行如图所示的程序框图,则输出的结果为${2^{\sqrt{3}}}$.

查看答案和解析>>

同步练习册答案