精英家教网 > 高中数学 > 题目详情
3.$\int\begin{array}{l}1\\ 0\end{array}\;x\;dx$=(  )
A.-1B.0C.$\frac{1}{2}$D.1

分析 根据定积分的计算法则计算即可.

解答 解:$\int\begin{array}{l}1\\ 0\end{array}\;x\;dx$=$\frac{1}{2}$x2|${\;}_{0}^{1}$=$\frac{1}{2}$,
故选:C.

点评 本题考查了定积分的计算,关键是求出原函数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知定义在R上的函数f(x)=ln(e2x+1)+ax(a∈R)是偶函数.
(1)求实数a的值;
(2)判断f(x)在[0,+∞)上的单调性,并用定义法证明;
(3)若f(x2+$\frac{1}{{x}^{2}}$)>f(mx+$\frac{m}{x}$)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图是根据变量x,y的观测数据(xi,yi)(i=1,2,3,…,10)得到的散点图,由这些散点图可以判断变量x,y具有相关关系的图是(  )
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设二次函数f(x)=ax2+bx+c(a>b>c),已知f(1)=0,且存实数m,使f(m)=-a.
(1)试推断$\frac{b}{2a}$与0的大小,并说明理由;
(2)设g(x)=f(x)+bx,对于x1,x2∈R,且x1≠x2,若g(x1)=g(x2)=0,求|x1-x2|的取值范围;
(3)求证:f(m+3)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知三棱锥S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=2$\sqrt{3}$,AB=1,AC=2,$∠BAC=\frac{π}{3}$,则球O的表面积为(  )
A.16πB.12πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设点P在直线y=x上,点Q在曲线y=lnx上,则|PQ|最小值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.$\sqrt{2}$-1D.ln2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.函数f(x)=$\frac{{a{x^2}+b}}{x}$的图象在点M(1,3)处的切线方程为x+y-4=0.
(Ⅰ)求a,b的值;
(Ⅱ)m,n∈R,若$x∈[\frac{1}{2},2]$时,f(x)min≤m2+n2,且存在${x_0}∈[\frac{1}{2},2]$使得f(x0)≥m2+n2,求复数z=m+ni在复平面上对应的点构成的区域面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线x-2y-2=0与直线x-2y+3=0,则它们之间的距离为(  )
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{5}$C.$\frac{\sqrt{3}}{3}$D.$\frac{5\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\sqrt{x}$,则f′(x)=$\frac{1}{2\sqrt{x}}$.

查看答案和解析>>

同步练习册答案