精英家教网 > 高中数学 > 题目详情
15.函数f(x)=$\frac{{a{x^2}+b}}{x}$的图象在点M(1,3)处的切线方程为x+y-4=0.
(Ⅰ)求a,b的值;
(Ⅱ)m,n∈R,若$x∈[\frac{1}{2},2]$时,f(x)min≤m2+n2,且存在${x_0}∈[\frac{1}{2},2]$使得f(x0)≥m2+n2,求复数z=m+ni在复平面上对应的点构成的区域面积.

分析 (Ⅰ)求出函数的导数,由切线方程可得f(1)=3,f′(1)=-1,解方程可得a,b;
(Ⅱ)求得f(x)在$x∈[\frac{1}{2},2]$时的极值和最值,可得m2+n2的范围,运用复数的几何意义和圆的面积公式,计算即可得到.

解答 解( I)∵$f(x)=ax+\frac{b}{x}$,∴$f'(x)=a-\frac{b}{x^2}$,
依题意$\left\{\begin{array}{l}f'(1)=-1\\ f(1)=3\end{array}\right.$,即有$\left\{\begin{array}{l}{a-b=-1}\\{a+b=3}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=1}\\{b=2}\end{array}\right.$;                       
( II)由( I)可得f(x)=x+$\frac{2}{x}$,
$f'(x)=1-\frac{2}{x^2}=\frac{{{x^2}-2}}{x^2}$,
令f′(x)=0解得$x=\sqrt{2}$,$x=-\sqrt{2}$(舍去),
当x变化时,f(x),f'(x)的变化如下表:

x$\frac{1}{2}$$(\frac{1}{2},\sqrt{2})$$\sqrt{2}$($\sqrt{2}$,2)2
f'(x)-+
f(x)$\frac{9}{2}$极小值f($\sqrt{2}$)3
由上表可得,$f{(x)_{max}}=\frac{9}{2}$,$f{(x)_{min}}=f(\sqrt{2})=2\sqrt{2}$,
所以$2\sqrt{2}≤{m^2}+{n^2}≤\frac{9}{2}$.
所以z=m+ni在复平面上对应的点构成的区域是以原点为圆心,${2^{\frac{3}{4}}}$为半径的圆的外部,
$\frac{{3\sqrt{2}}}{2}$为半径的圆的内部(包括圆周),
所以所求的区域面积为$\frac{9}{2}π-2\sqrt{2}π=(\frac{9}{2}-2\sqrt{2})π$.

点评 本题考查导数的运用:求切线的斜率和单调区间、极值和最值,同时考查复数的几何意义和圆的面积,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知cosα=-$\frac{3}{5}$,α∈($\frac{π}{2}$,π),sinβ=-$\frac{12}{13}$,β是第三象限角,则sinα•tanβ=(  )
A.-$\frac{48}{25}$B.$\frac{48}{25}$C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2lnx-x2
(1)求函数f(x)在x=1处的切线方程;
(2)求函数f(x)的单调区间和极值;
(3)若函数f(x)与g(x)=x+$\frac{a}{x}$(a∈R)有相同极值点,且对于任意的${x_1},{x_2}∈[\frac{1}{e},e]$,不等式f(x1)-g(x2)≤m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.$\int\begin{array}{l}1\\ 0\end{array}\;x\;dx$=(  )
A.-1B.0C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知定义在[-3,3]上的函数f(x)=(x2+ax+b)x,在x=±1处的切线斜率均为-1.有以下命题:
①f(x)是奇函数;
②若f(x)在[s,t]内递减,则|t-s|的最大值为4;
③若方程f(x)-m=0有三个根,则m的取值范围是$(-\frac{{16\sqrt{3}}}{9},\frac{{16\sqrt{3}}}{9})$;
④若对?x∈[-3,3],k≤f′(x)恒成立,则k的最大值为3.
其中正确命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点A(-3,0)、B(3,0),动点P满足||PA|-|PB||=m,则0<m<6是动点P的轨迹为双曲线的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.观察以下列出的表达式:$f(n,1)=\frac{1}{2}{n^2}+\frac{1}{2}n$,f(n,2)=n2,$f(n,3)=\frac{3}{2}{n^2}-\frac{1}{2}n$,f(n,4)=2n2-n,
…推测f(n,k)的表达式,由此计算f(10,20)=910.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知以点C为圆心的圆经过点A(0,-1)和B(4,3),且圆心在直线3x+y-15=0上.
(Ⅰ)求圆C的方程;
(Ⅱ)设点P在圆C上,求△PAB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个均匀正四面体的4个面中,二个面上标以数0,一个面上标以数1,一个面上标以数2.将这个正四面体抛掷2次,其着地的一面上的数字之积的数学期望是$\frac{9}{16}$.

查看答案和解析>>

同步练习册答案