| A. | -$\frac{48}{25}$ | B. | $\frac{48}{25}$ | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
分析 由cosα与sinβ的值,利用同角三角函数间基本关系求出sinα与cosβ的值,进而求出tanβ的值,代入原式计算即可得到结果.
解答 解:∵cosα=-$\frac{3}{5}$,α∈($\frac{π}{2}$,π),sinβ=-$\frac{12}{13}$,β是第三象限角,
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{4}{5}$,cosβ=-$\sqrt{1-si{n}^{2}β}$=-$\frac{5}{13}$,即tanβ=$\frac{12}{5}$,
则sinα•tanβ=$\frac{48}{25}$,
故选:B.
点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | -6 | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ②③ | C. | ③④ | D. | ①④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com