精英家教网 > 高中数学 > 题目详情
18.已知三棱锥S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=2$\sqrt{3}$,AB=1,AC=2,$∠BAC=\frac{π}{3}$,则球O的表面积为(  )
A.16πB.12πC.D.

分析 由三棱锥S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=2$\sqrt{3}$,AB=1,AC=2,∠BAC=60°,知BC=$\sqrt{3}$,∠ABC=90°.故△ABC截球O所得的圆O′的半径r=$\frac{1}{2}$AC=1,由此能求出球O的半径,从而能求出球O的表面积.

解答 解:如图,三棱锥S-ABC的所有顶点都在球O的球面上,
∵SA⊥平面ABC,SA=2$\sqrt{3}$,AB=1,AC=2,∠BAC=60°,
∴BC=$\sqrt{1+4-2×1×2×cos60°}$=$\sqrt{3}$,
∴∠ABC=90°.
∴△ABC截球O所得的圆O′的半径r=$\frac{1}{2}$AC=1,
∴球O的半径R=$\sqrt{{1}^{2}+(\frac{2\sqrt{3}}{2})^{2}}$=2,
∴球O的表面积S=4πR2=16π.
故选:A.

点评 本题考查球的表面积的求法,合理地作出图形,数形结合求出球半径,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=log2(x+2)+x-5存在唯一零点x0,则大于x0的最小整数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设x∈R,函数$f(x)=sin(ωx+φ)(ω>0,-\frac{π}{2}<φ<0)$的最小正周期为π,且$f(\frac{π}{4})=\frac{1}{2}$.
(Ⅰ)求ω和φ的值;
(Ⅱ)求函数f(x)在(-π,π)上的单调第减区间;
(Ⅲ)若f(x)>$\frac{{\sqrt{2}}}{2}$,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2lnx-x2
(1)求函数f(x)在x=1处的切线方程;
(2)求函数f(x)的单调区间和极值;
(3)若函数f(x)与g(x)=x+$\frac{a}{x}$(a∈R)有相同极值点,且对于任意的${x_1},{x_2}∈[\frac{1}{e},e]$,不等式f(x1)-g(x2)≤m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在等比数列{an}中,a3=7,前3项之和S3=21,则公比q的值等于(  )
A.1B.-$\frac{1}{2}$C.1或$-\frac{1}{2}$D.-1或$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.$\int\begin{array}{l}1\\ 0\end{array}\;x\;dx$=(  )
A.-1B.0C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知定义在[-3,3]上的函数f(x)=(x2+ax+b)x,在x=±1处的切线斜率均为-1.有以下命题:
①f(x)是奇函数;
②若f(x)在[s,t]内递减,则|t-s|的最大值为4;
③若方程f(x)-m=0有三个根,则m的取值范围是$(-\frac{{16\sqrt{3}}}{9},\frac{{16\sqrt{3}}}{9})$;
④若对?x∈[-3,3],k≤f′(x)恒成立,则k的最大值为3.
其中正确命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.观察以下列出的表达式:$f(n,1)=\frac{1}{2}{n^2}+\frac{1}{2}n$,f(n,2)=n2,$f(n,3)=\frac{3}{2}{n^2}-\frac{1}{2}n$,f(n,4)=2n2-n,
…推测f(n,k)的表达式,由此计算f(10,20)=910.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数g(x)=x3+($\frac{m}{2}$+2)x2-2x在(2,3)上总存在极值,则实数m的取值范围为(  )
A.(-$\frac{58}{9}$,-6)B.(-$\frac{37}{3}$,-9)C.(-$\frac{37}{3}$,9)D.(-$\frac{37}{3}$,-6)

查看答案和解析>>

同步练习册答案