精英家教网 > 高中数学 > 题目详情
如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为菱形,且AD=AB=AA1=2,∠BAD=60°,E为AB的中点.
(1)证明:AC1∥平面EB1C;
(2)求三棱锥C1-EB1C的体积.
考点:棱柱、棱锥、棱台的体积,直线与平面平行的判定
专题:综合题,空间位置关系与距离
分析:(1)利用三角形的中位线及线面平行的判定定理即可证明;
(2)利用等体积转换,即可三棱锥C1-EB1C的体积
解答: (1)证明:连接BC1,B1C∩BC1=O,连接EO.
∵AE=EB,OB=OC1,∴EO∥AC1
∵AC1?面EB1C,EO?面EB1C
∴AC1∥面EB1C.
(2)解:∵AD=AB=AA1=2,∠BAD=60°,E为AB的中点.
VC1-EB1C=VE-C1B1C=
1
3
×
1
2
×2×2×
3
2
=
3
3
点评:熟练掌握线面平行的判定定理、等体积转换是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等差数列{an}满足a7+a8+a3=15,函数fn(x)=sin(
π
n
x+
π
3
),那么f5(a6)的值为(  )
A、
3
2
B、-
3
2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的各项均为正数,且2a1
1
2
,3a2成等差数列,a2
1
3
a3,a6成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)已知bn=log3
1
an
,记Sn=b1+b2+…+bn,Tn=1+
1
1+
1
3
+
1
1+
1
3
+
1
6
+…+
1
1+
1
3
+
1
6
+…+
1
Sn
,求证:T2014<1013.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标xOy中,不等式组
-1≤x≤2
0≤y≤2
表示的平面区域为W,从区域W中随机任取一点M(x,y).
(1)若x∈R,y∈R,求|OM|≥1的概率;
(2)若x∈Z,y∈Z,求点M位于第一象限的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=2,an+1=
4an-2
3an-1
(n∈N*)
,设bn=
3an-2
an-1

(Ⅰ)试写出数列{bn}的前三项;
(Ⅱ)求证:数列{bn}是等比数列,并求数列{an}的通项公式an
(Ⅲ)设{an}的前n项和为Sn,求证:Sn
(n+2)•2n-1-1
2n-1
(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.
(Ⅰ)求异面直线AD1与BD所成的角的余弦值;
(Ⅱ)求直线B1C1与平面ACD1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分如图所示.
(Ⅰ)试确定函数f(x)的解析式;
(Ⅱ)将函数f(x)图象上所有点向左平移
1
4
个单位,得到函数g(x)的图象,求函数g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)已知x>0,y>0,且x+y=1,求
1
x
+
4
y
的最小值;
(Ⅱ)设0<x<2,求函数y=3
x(2-x)
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设不等式组
x>0
y>0
y≤-nx+3n
所表示的平面区域为Dn,记Dn内的格点(格点即横坐标和纵坐标均为整数的点)个数为f(n)(n∈N*).
(Ⅰ)求f(1),f(2)的值及f(n)的表达式;
(Ⅱ)设bn=2nf(n)
    (ⅰ)求数列{bn}的前n项的和Sn
    (ⅱ)请探究是否存在正整数n,使
Sn-bn
Sn+1-bn+1
1
5
成立?若存在,求出所有正整数n;若不存在,说明理由.

查看答案和解析>>

同步练习册答案